Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = animal african trypanosomiasis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2414 KB  
Article
Genomic Insights into Genetic Diversity and Adaptation of Nanyang Cattle: Implications for Conservation and Breeding
by Yan Zhang, Xian Liu, Jiakun Liu, Tong Fu, Hetian Huang, Mingpeng Han, Dong Liang and Tengyun Gao
Animals 2025, 15(20), 3033; https://doi.org/10.3390/ani15203033 - 19 Oct 2025
Viewed by 733
Abstract
The conservation of agricultural animal resources holds significant importance for addressing future breeding demands and promoting sustainable utilization of regional livestock genetic resources. As one of China’s five major fine cattle breeds, Nanyang cattle exhibit notable characteristics, including strong adaptability and a docile [...] Read more.
The conservation of agricultural animal resources holds significant importance for addressing future breeding demands and promoting sustainable utilization of regional livestock genetic resources. As one of China’s five major fine cattle breeds, Nanyang cattle exhibit notable characteristics, including strong adaptability and a docile temperament. Through whole-genome comparative analysis of the Nanyang cattle core conservation population and free-ranging populations in mountainous areas, this study systematically investigated the genetic diversity, population structure, and adaptive evolutionary mechanisms of this indigenous Chinese cattle breed. Population structure analysis revealed that both groups belong to a single genetic lineage of Nanyang cattle without significant genetic differentiation; however, the free-ranging population demonstrated a slower linkage disequilibrium decay rate. Combined FST and θπ ratio analyses identified 170 positively selected genes, with KEGG enrichment highlighting glutamatergic synapse and African trypanosomiasis immune pathways. PLCB4, as a shared gene across both pathways, may exert pleiotropic functions in environmental adaptation. The core conservation population likely exhibits reduced diversity in neuroplasticity-related genes under artificial selection, whereas the free-ranging population retained more genes associated with environmental adaptation and immune response. These findings provide genomic evidence for formulating differentiated conservation strategies for Nanyang cattle, necessitating balanced co-optimization of production trait breeding and natural adaptability preservation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

22 pages, 520 KB  
Review
Prevalence of Human and Animal African Trypanosomiasis in Nigeria: A Scoping Review
by Chinwe Chukwudi, Elizabeth Odebunmi and Chukwuemeka Ibeachu
Parasitologia 2025, 5(4), 53; https://doi.org/10.3390/parasitologia5040053 - 11 Oct 2025
Viewed by 2102
Abstract
African trypanosomiasis is a protozoan disease that affects both humans and animals. Human African Trypanosomiasis (HAT) is a Neglected Tropical Disease targeted for elimination in 2030. Although WHO has not reported HAT from Nigeria in the last decade, there are published studies reporting [...] Read more.
African trypanosomiasis is a protozoan disease that affects both humans and animals. Human African Trypanosomiasis (HAT) is a Neglected Tropical Disease targeted for elimination in 2030. Although WHO has not reported HAT from Nigeria in the last decade, there are published studies reporting seroprevalence, parasite detection/isolation, and animal reservoirs potentially involved in HAT transmission in Nigeria. Interestingly, the burden of Animal African Trypanosomiasis (AAT) continues to increase. In this study, we synthesized published reports on the prevalence of HAT and AAT in Nigeria from 1993–2021, the trypanosome species involved, the spread of animal reservoirs, and the variability in diagnostic methodologies employed. A scoping review was performed following the methodological framework outlined in PRISMA-ScR checklist. Sixteen eligible studies published between 1993 and 2021 were reviewed: 13 for AAT and 3 for HAT. Varying prevalence rates were recorded depending on the diagnostic methods employed. The average prevalence reported from these studies was 3.3% (HAT), and 27.3% (AAT). Diagnostic methods employed include microscopy, PCR and Card Agglutination Test for Trypanosomiasis (CATT). Cattle, pigs, and dogs were identified as carriers of human-infective trypanosomes. This study highlights the scarcity of HAT epidemiological studies/data from Nigeria, the high prevalence, complex epidemiology, limited attention and surveillance of African Trypanosomiasis in Nigeria. Remarkably, WHO records do not reflect the published data showing evidence of HAT prevalence/cases in Nigeria. Unfortunately, diagnostics challenges and unrealistic disease reporting protocols seem to limit HAT reporting from Nigeria. Therefore, adequately coordinated epidemiological surveys and targeted intervention policies are imperative to ascertain the true epidemiological status of HAT in Nigeria and prevent disease re-emergence towards achieving WHO’s elimination targets. The presence of animal carriers of human-infective trypanosomes underscores the importance of a one-health approach to combat African trypanosomiasis effectively. Full article
Show Figures

Figure 1

51 pages, 2340 KB  
Review
Interventions for Neglected Diseases Caused by Kinetoplastid Parasites: A One Health Approach to Drug Discovery, Development, and Deployment
by Godwin U. Ebiloma, Amani Alhejeli and Harry P. de Koning
Pharmaceuticals 2025, 18(9), 1415; https://doi.org/10.3390/ph18091415 - 19 Sep 2025
Viewed by 1849
Abstract
Kinetoplastids are protozoa that possess a unique organelle called a kinetoplast. These include the parasites Trypanosoma cruzi, T. brucei and related African trypanosomes, and Leishmania spp. These parasites cause a variety of neglected tropical diseases in humans and livestock, with devastating [...] Read more.
Kinetoplastids are protozoa that possess a unique organelle called a kinetoplast. These include the parasites Trypanosoma cruzi, T. brucei and related African trypanosomes, and Leishmania spp. These parasites cause a variety of neglected tropical diseases in humans and livestock, with devastating consequences. In the absence of any vaccine, pharmaceutical interventions are the mainstay of control, but these have historically been underfunded, fragmented, and inadequately aligned with the complex zoonotic and ecological realities of the parasites’ transmission dynamics. In this review, the landscape of current and emerging drugs for treating leishmaniasis, Chagas disease, and African trypanosomiasis is critically evaluated across both veterinary and human contexts. It examines the challenges of legacy compounds, the pharmacological shortcomings in multi-host, multi-tropic and multi-stage disease systems, and the gaps in veterinary therapeutics, specifically for African animal trypanosomiasis and canine leishmaniasis but also the animal reservoir of T. cruzi. Emphasis is placed on pharmacokinetic divergence between species, the accompanying risks with the use of off-label human drugs in animals, and the ecological effects of environmental drug exposure. We propose a far-reaching One Health framework for pharmaceutical research and development, promoting dual-indication co-development, ecological pharmacology, regulatory harmonisation, and integrated delivery systems. In this context, we argue that the drug development pipeline must be rationalised as a transdisciplinary and ecologically embedded process, able to interrupt parasite transmission to human, animal, and vector interfaces. Our findings reveal that we can bridge age-old therapeutic gaps, advance towards sustainable control, and eventually eliminate the neglected diseases caused by kinetoplastid protozoan parasites by aligning pharmaceutical innovation with One Health principles. This article aims to promote future research and development of innovative drugs that are sustainable under the One Health framework. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

15 pages, 3450 KB  
Article
Trypanocide Use and Molecular Characterization of Trypanosomes Resistant to Diminazene Aceturate in Cattle in Northern Côte D’Ivoire
by Jean-Yves Ekra, Eliakunda Michael Mafie, Henri Sonan, Michael Kanh, Biégo Guillaume Gragnon, Edouard K. N’Goran and Jagan Srinivasan
Trop. Med. Infect. Dis. 2024, 9(9), 192; https://doi.org/10.3390/tropicalmed9090192 - 24 Aug 2024
Cited by 2 | Viewed by 1786
Abstract
The resistance of trypanosomes to the doses of trypanocide administered by farmers to their animals acts as a real brake on efforts to control to combat African trypanosomiasis. Thus, in-depth knowledge of the use of these different molecules and their resistance profiles will [...] Read more.
The resistance of trypanosomes to the doses of trypanocide administered by farmers to their animals acts as a real brake on efforts to control to combat African trypanosomiasis. Thus, in-depth knowledge of the use of these different molecules and their resistance profiles will be necessary to establish an integrated strategy to combat African trypanosomiasis. To achieve these objectives, a participatory survey among farmers and a resistance diagnosis of trypanosome strains identified in three regions of northern Côte d’Ivoire (Bagoué, Poro and Tchologo) was carried out using the PCR-RFLP technique, followed by sequencing of genes of interest. This study made it possible to identify three molecules that are commonly used by 85% (63/74) of farmers. In descending order of use, we identified Isometamidium chloride (43%), Diminazene aceturate (28%) and Homidium bromide (14%). Three species of trypanosomes, Trypanosoma congolense, Trypanosoma. theileri and Trypanosoma vivax, were identified in farms, and only one strain had the adenosine transporter gene (Trypanosoma congolense), but this strain was sensitive to the Diminazene aceturate molecule. Comparison of the sequence of this trypanosome strain showed that it is different to the Kenyan strain diagnosed as resistant to the Diminazene aceturate molecule. This study shows that a variety of trypanocides are used by farmers, and that the resistance profile of the strains to the Diminazene aceturate molecule could not be observed. However, it is important to further investigate the other molecules encountered in Côte d’Ivoire. Full article
Show Figures

Figure 1

14 pages, 2083 KB  
Article
Genetic Diversity of Trypanosomes Infesting Cattle from Savannah District in North of Côte d’Ivoire Using Conserved Genomic Signatures: rRNA, ITS1 and gGAPDH
by Jean-Yves Ekra, Eliakunda Michael Mafie, Edouard K. N’Goran, Dramane Kaba, Biégo Guillaume Gragnon and Jagan Srinivasan
Pathogens 2024, 13(3), 262; https://doi.org/10.3390/pathogens13030262 - 19 Mar 2024
Cited by 2 | Viewed by 3026
Abstract
The potential danger to livestock from African animal trypanosomiasis is well known. However, the trypanosome species circulating in cattle and their genetics are poorly understood. After different alignments according to three regions (ITS1, gGAPDH and rRNA gene) of the trypanosome genome, phylogenetic analyses [...] Read more.
The potential danger to livestock from African animal trypanosomiasis is well known. However, the trypanosome species circulating in cattle and their genetics are poorly understood. After different alignments according to three regions (ITS1, gGAPDH and rRNA gene) of the trypanosome genome, phylogenetic analyses were used to show the genetic diversity of the different species that were circulating in the cattle in three regions (Bagoue, Poro and Tchologo) of Côte d’Ivoire. These analyses were performed by alignment of ITS1; by alignment of partial 18S, ITS1, 5.8S, ITS2 and partial 28S rRNA genes; and by alignment of gGAPDH gene with sequences of Trypanosomes found in GenBank. Three species were identified (T. vivax, T. theileri and T. congolense) in the cattle in the three northern regions of Côte d’Ivoire. T. vivax and T. theileri were the most abundant species in the present study. Contrary to the other primers used in this study, the ITS1 primers were not able to amplify T. theileri. We observed mixed infections between T. theileri and the other two species identified (T. vivax and T. congolense). As far as primers are concerned, in some cases, rRNA was able to identify the same species of trypanosomes that the ITS1 and gGAPDH primers were able to identify. Two main distinct groups of T. theileri complex were identified. The T. congolense and T. vivax strains were close to African strains, such as those from Kenya, Nigeria and Cameroon, unlike the T. theileri strain. Three trypanosome species (T. vivax, T. theileri and T. congolense) circulate in cattle in the Savannah district of Côte d’Ivoire. The genetic diversity of the trypanosome species encountered in this study cannot be classified as intraspecies according to geographical area and breed of cattle they infect. Full article
Show Figures

Figure 1

21 pages, 5396 KB  
Article
Characterization of the Bacterial Profile from Natural and Laboratory Glossina Populations
by Youssef El Yamlahi, Naima Bel Mokhtar, Amal Maurady, Mohammed R. Britel, Costas Batargias, Delphina E. Mutembei, Hamisi S. Nyingilili, Deusdedit J. Malulu, Imna I. Malele, Elias Asimakis, Panagiota Stathopoulou and George Tsiamis
Insects 2023, 14(11), 840; https://doi.org/10.3390/insects14110840 - 29 Oct 2023
Cited by 2 | Viewed by 2726
Abstract
Tsetse flies (Glossina spp.; Diptera: Glossinidae) are viviparous flies that feed on blood and are found exclusively in sub-Saharan Africa. They are the only cyclic vectors of African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). In this [...] Read more.
Tsetse flies (Glossina spp.; Diptera: Glossinidae) are viviparous flies that feed on blood and are found exclusively in sub-Saharan Africa. They are the only cyclic vectors of African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). In this study, we employed high throughput sequencing of the 16S rRNA gene to unravel the diversity of symbiotic bacteria in five wild and three laboratory populations of tsetse species (Glossina pallidipes, G. morsitans, G. swynnertoni, and G. austeni). The aim was to assess the dynamics of bacterial diversity both within each laboratory and wild population in relation to the developmental stage, insect age, gender, and location. Our results indicated that the bacterial communities associated with the four studied Glossina species were significantly influenced by their region of origin, with wild samples being more diverse compared to the laboratory samples. We also observed that the larval microbiota was significantly different than the adults. Furthermore, the sex and the species did not significantly influence the formation of the bacterial profile of the laboratory colonies once these populations were kept under the same rearing conditions. In addition, Wigglesworthia, Acinetobacter, and Sodalis were the most abundant bacterial genera in all the samples, while Wolbachia was significantly abundant in G. morsitans compared to the other studied species. The operational taxonomic unit (OTU) co-occurrence network for each location (VVBD insectary, Doma, Makao, and Msubugwe) indicated a high variability between G. pallidipes and the other species in terms of the number of mutual exclusion and copresence interactions. In particular, some bacterial genera, like Wigglesworthia and Sodalis, with high relative abundance, were also characterized by a high degree of interactions. Full article
(This article belongs to the Special Issue Genetics and Ecological Evolution of Dipteran Pest Species)
Show Figures

Figure 1

10 pages, 1494 KB  
Article
Population Knowledge and Practices and the Prevalence of Trypanosomes Circulating in Domestic Animals in Three Active Human African Trypanosomiasis Foci in the Republic of Congo
by Irina Bemba, Arsene Lenga, Herman Parfait Awono-Ambene and Christophe Antonio-Nkondjio
Microbiol. Res. 2023, 14(3), 1067-1076; https://doi.org/10.3390/microbiolres14030071 - 4 Aug 2023
Viewed by 2486
Abstract
Human African Trypanosomiasis (HAT) is still endemic in the Republic of Congo. Although the incidence of cases has significantly decreased over years, the disease still persists in some active foci. Factors contributing to the maintenance of the disease such as the existence of [...] Read more.
Human African Trypanosomiasis (HAT) is still endemic in the Republic of Congo. Although the incidence of cases has significantly decreased over years, the disease still persists in some active foci. Factors contributing to the maintenance of the disease such as the existence of an animal reservoir or population knowledge are still not well known. It is in this context that a study focusing on the knowledge and practices of the population with regard to HAT as well as on the prevalence of trypanosomes infecting animals was undertaken in three active HAT foci in the Republic of Congo. The study was performed using field surveys conducted from November 2019 to June 2021. Domestic animal blood was examined by microscopy and PCR to detect the presence of trypanosomes. A structured questionnaire was administered to the population to assess their knowledge and practices concerning HAT in these endemic foci. More than half of the animals examined were found to be infected with trypanosomes (51.22%). The main trypanosome species infecting animals were Trypanosoma congolense savannah (67.2%) and Trypanosoma brucei (s.l.) (32.8%). No trypanosomes infecting humans were detected. Concerning household surveys, more than half of the respondents (52.9%) were fully aware of the mode of transmission and symptoms of the disease. The majority of people preferred to wear clothes covering the whole body and to use locally made soap as repellents to protect themselves from tsetse fly bites. This study suggests frequent circulation of animal trypanosomes in domestic animals and the use of personal measures to protect against tsetse fly bites. Updating information on the HAT animal reservoir and population knowledge alongside regular monitoring of the tsetse fly populations and the use of traps to control tsetse flies are crucial to drive efforts towards the elimination of gHAT in the Republic of Congo. Full article
(This article belongs to the Collection Public Health and Quality Aspects Related to Animal Productions)
Show Figures

Figure 1

33 pages, 4518 KB  
Article
Cloning and Characterization of Trypanosoma congolense and T. vivax Nucleoside Transporters Reveal the Potential of P1-Type Carriers for the Discovery of Broad-Spectrum Nucleoside-Based Therapeutics against Animal African Trypanosomiasis
by Marzuq A. Ungogo, Mustafa M. Aldfer, Manal J. Natto, Hainan Zhuang, Robyn Chisholm, Katy Walsh, MarieClaire McGee, Kayhan Ilbeigi, Jamal Ibrahim Asseri, Richard J. S. Burchmore, Guy Caljon, Serge Van Calenbergh and Harry P. De Koning
Int. J. Mol. Sci. 2023, 24(4), 3144; https://doi.org/10.3390/ijms24043144 - 5 Feb 2023
Cited by 11 | Viewed by 3866
Abstract
African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites [...] Read more.
African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites but viable chemotherapy must be active against all three species. Divergence in sensitivity to nucleoside antimetabolites could be caused by differences in nucleoside transporters. Having previously characterized the T. brucei nucleoside carriers, we here report the functional expression and characterization of the main adenosine transporters of T. vivax (TvxNT3) and T. congolense (TcoAT1/NT10), in a Leishmania mexicana cell line (‘SUPKO’) lacking adenosine uptake. Both carriers were similar to the T. brucei P1-type transporters and bind adenosine mostly through interactions with N3, N7 and 3′-OH. Expression of TvxNT3 and TcoAT1 sensitized SUPKO cells to various 7-substituted tubercidins and other nucleoside analogs although tubercidin itself is a poor substrate for P1-type transporters. Individual nucleoside EC50s were similar for T. b. brucei, T. congolense, T. evansi and T. equiperdum but correlated less well with T. vivax. However, multiple nucleosides including 7-halogentubercidines displayed pEC50>7 for all species and, based on transporter and anti-parasite SAR analyses, we conclude that nucleoside chemotherapy for AAT is viable. Full article
Show Figures

Figure 1

12 pages, 1854 KB  
Article
Comparison of Bioluminescent Substrates in Natural Infection Models of Neglected Parasitic Diseases
by Sarah Hendrickx, Dimitri Bulté, Dorien Mabille, Roxanne Mols, Mathieu Claes, Kayhan Ilbeigi, Rokaya Ahmad, Laura Dirkx, Sara I. Van Acker and Guy Caljon
Int. J. Mol. Sci. 2022, 23(24), 16074; https://doi.org/10.3390/ijms232416074 - 16 Dec 2022
Cited by 7 | Viewed by 2503
Abstract
The application of in vivo bioluminescent imaging in infectious disease research has significantly increased over the past years. The detection of transgenic parasites expressing wildtype firefly luciferase is however hampered by a relatively low and heterogeneous tissue penetrating capacity of emitted light. Solutions [...] Read more.
The application of in vivo bioluminescent imaging in infectious disease research has significantly increased over the past years. The detection of transgenic parasites expressing wildtype firefly luciferase is however hampered by a relatively low and heterogeneous tissue penetrating capacity of emitted light. Solutions are sought by using codon-optimized red-shifted luciferases that yield higher expression levels and produce relatively more red or near-infrared light, or by using modified bioluminescent substrates with enhanced cell permeability and improved luminogenic or pharmacokinetic properties. In this study, the in vitro and in vivo efficacy of two modified bioluminescent substrates, CycLuc1 and AkaLumine-HCl, were compared with that of D-luciferin as a gold standard. Comparisons were made in experimental and insect-transmitted animal models of leishmaniasis (caused by intracellular Leishmania species) and African trypanosomiasis (caused by extracellular Trypanosoma species), using parasite strains expressing the red-shifted firefly luciferase PpyRE9. Although the luminogenic properties of AkaLumine-HCl and D-luciferin for in vitro parasite detection were comparable at equal substrate concentrations, AkaLumine-HCl proved to be unsuitable for in vivo infection follow-up due to high background signals in the liver. CycLuc1 presented a higher in vitro luminescence compared to the other substrates and proved to be highly efficacious in vivo, even at a 20-fold lower dose than D-luciferin. This efficacy was consistent across infections with the herein included intracellular and extracellular parasitic organisms. It can be concluded that CycLuc1 is an excellent and broadly applicable alternative for D-luciferin, requiring significantly lower doses for in vivo bioluminescent imaging in rodent models of leishmaniasis and African trypanosomiasis. Full article
(This article belongs to the Special Issue Genomics: Infectious Disease and Host-Pathogen Interaction 2.0)
Show Figures

Graphical abstract

10 pages, 3500 KB  
Article
Tsetse Flies Infected with Trypanosomes in Three Active Human African Trypanosomiasis Foci of the Republic of Congo
by Irina Bemba, Arsene Lenga, Herman Parfait Awono-Ambene and Christophe Antonio-Nkondjio
Pathogens 2022, 11(11), 1275; https://doi.org/10.3390/pathogens11111275 - 31 Oct 2022
Cited by 3 | Viewed by 2436
Abstract
Introduction: Human African trypanosomiasis (HAT) is a neglected tropical disease still endemic in the Republic of Congo. Despite the continuous detection of HAT cases in the country, there is still not enough data on trypanosome infections in tsetse flies, trypanosome species and tsetse [...] Read more.
Introduction: Human African trypanosomiasis (HAT) is a neglected tropical disease still endemic in the Republic of Congo. Despite the continuous detection of HAT cases in the country, there is still not enough data on trypanosome infections in tsetse flies, trypanosome species and tsetse flies’ species distribution in endemic foci. The present study was intended to fill this gap and improve understanding of trypanosome circulation in three active foci in the centre and south of Congo. Methods: Pyramid traps were set in various places in villages to collect tsetse flies both during the rainy and dry seasons. Once collected, tsetse flies were identified using morphological keys. DNA extracted from flies was processed by PCR for species identification and for detection of trypanosome presence. A second PCR was run for different trypanosome species identification. Results: A total of 1291 tsetse flies were collected. The average apparent density of flies per day was 0.043 in Mpouya, 0.73 in Ngabé and 2.79 in Loudima. Glossina fuscipes quazensis was the predominant tsetse fly collected in Ngabé and Mpouya, while Glossina palpalis palpalis was the only tsetse fly found in Loudima. A total of 224 (17.7%) flies were detected infected by trypanosomes; 100 (7.91%) by Trypanosoma congolense savannah, 22 (1.74%) by Trypanosoma congolense forest, 15 (1.19%) by Trypanosoma vivax, 83 (6.56%) by Trypanosoma brucei (s.l.) and 2 (0.16%) undetermined species. No T Trypanosoma brucei gambiense was found. A total of 57 co-infections between T. brucei (s.l.) and T. congolense savannah or T. brucei (s.l.) and T. congolense forest were found only in G. p. palpalis. Loudima recorded the highest number of infected tsetse flies. Conclusion: The study provided updated information on the distribution of tsetse fly populations as well as on Trypanosoma species circulating in tsetse flies in the different active HAT foci in Congo. These data suggested a high risk of potential transmission of animal trypanosomes in these foci, thus stressing the need for active surveillance in this endemic area. Full article
(This article belongs to the Special Issue Parasites: Epidemiology, Treatment and Control)
Show Figures

Figure 1

14 pages, 1411 KB  
Article
Molecular Identification of Trypanosome Diversity in Domestic Animals Reveals the Presence of Trypanosoma brucei gambiense in Historical Foci of Human African Trypanosomiasis in Gabon
by Larson Boundenga, Illich Manfred Mombo, Mouinga-Ondeme Augustin, Ngoubangoye Barthélémy, Patrice Makouloutou Nzassi, Nancy D. Moukodoum, Virginie Rougeron and Franck Prugnolle
Pathogens 2022, 11(9), 992; https://doi.org/10.3390/pathogens11090992 - 30 Aug 2022
Cited by 6 | Viewed by 3865
Abstract
Human African Trypanosomiasis (HAT) is an infectious disease caused by protozoan parasites belonging to the Trypanosoma genus. In sub-Saharan Africa, there is a significant threat as many people are at risk of infection. Despite this, HAT is classified as a neglected tropical disease. [...] Read more.
Human African Trypanosomiasis (HAT) is an infectious disease caused by protozoan parasites belonging to the Trypanosoma genus. In sub-Saharan Africa, there is a significant threat as many people are at risk of infection. Despite this, HAT is classified as a neglected tropical disease. Over the last few years, several studies have reported the existence of a wide diversity of trypanosome species circulating in African animals. Thus, domestic and wild animals could be reservoirs of potentially dangerous trypanosomes for human populations. However, very little is known about the role of domestic animals in maintaining the transmission cycle of human trypanosomes in central Africa, especially in Gabon, where serious cases of infection are recorded each year, sometimes leading to hospitalization or death of patients. Komo-Mondah, located within Estuaries (Gabonese province), stays the most active HAT disease focus in Gabon, with a mean of 20 cases per year. In this study, we evaluated the diversity and prevalence of trypanosomes circulating in domestic animals using the Polymerase Chain Reaction (PCR) technique. We found that 19.34% (53/274) of the domestic animals we studied were infected with trypanosomes. The infection rates varied among taxa, with 23.21% (13/56) of dogs, 16.10% (19/118) of goats, and 21.00% (21/100) of sheep infected. In addition, we have observed a global mixed rate of infections of 20.75% (11/53) among infected individuals. Molecular analyses revealed that at least six Trypanosome species circulate in domestic animals in Gabon (T. congolense, T. simiae, T. simiae Tsavo, T. theileri, T. vivax, T. brucei (including T. brucei brucei, and T. brucei gambiense)). In conclusion, our study showed that domestic animals constitute important potential reservoirs for trypanosome parasites, including T. brucei gambiense, which is responsible for HAT. Full article
Show Figures

Graphical abstract

8 pages, 668 KB  
Systematic Review
Systematic Review and Meta-Analysis on Knowledge Attitude and Practices on African Animal Trypanocide Resistance
by Keneth Iceland Kasozi, Ewan Thomas MacLeod, Charles Waiswa, Michael Mahero, Ibrahim Ntulume and Susan Christina Welburn
Trop. Med. Infect. Dis. 2022, 7(9), 205; https://doi.org/10.3390/tropicalmed7090205 - 23 Aug 2022
Cited by 6 | Viewed by 3051
Abstract
Background: African trypanocide resistance is an emerging public health emergency whose control requires a revisit on farmer’s knowledge, attitudes, and practices in developing countries. African animal trypanocide resistance (AATr) is rife in an environment where drug use and policy decisions are disjointed. The [...] Read more.
Background: African trypanocide resistance is an emerging public health emergency whose control requires a revisit on farmer’s knowledge, attitudes, and practices in developing countries. African animal trypanocide resistance (AATr) is rife in an environment where drug use and policy decisions are disjointed. The objective of the study was to identify community factors responsible for the development of AATr. This was important since diminazene aceturate (DA), isometamidium chloride (ISM), and homidium bromide (HB) have existed for over 30 years and no new drugs have been provided to farmers. Methods: An electronic keyword search across 12 databases was conducted using a search criterion from 1806 to June 2022. This generated a total of 24 publications, but after removing duplicates, review articles, and nonrelated articles, a total of eight papers were included in the analysis by following the PRISMA checklist. A meta-analysis was conducted on the data extracted and the risk ratio and inverse variance at 95% confidence interval were calculated using RevMan®. Results: All the eight articles in the study showed that DA was the most preferred trypanocide in both West and Eastern Africa. Poor farmer knowledge of AATr and limited drug options were major drivers for trypanocide resistance. In addition, farmer treatments, use of untrained personnel, poor administration, poor dosing, and preparation of trypanocides were major drivers for the development of AATr and similarities were identified in DA and ISM practices (P = 0.13). Conclusions: AATr is spread in developing countries due to a lack of community knowledge, attitudes, and drug-use practices. This situation could be reversed through interdisciplinary collaborations in endemic communities by promoting effective treatments and responsible drug handling. Full article
(This article belongs to the Special Issue Feature Papers in Tropical Medicine and Infectious Disease)
Show Figures

Figure 1

24 pages, 6042 KB  
Review
Current Treatments to Control African Trypanosomiasis and One Health Perspective
by Alberto Venturelli, Lorenzo Tagliazucchi, Clara Lima, Federica Venuti, Giulia Malpezzi, George E. Magoulas, Nuno Santarem, Theodora Calogeropoulou, Anabela Cordeiro-da-Silva and Maria Paola Costi
Microorganisms 2022, 10(7), 1298; https://doi.org/10.3390/microorganisms10071298 - 27 Jun 2022
Cited by 56 | Viewed by 10968
Abstract
Human African Trypanosomiasis (HAT, sleeping sickness) and Animal African Trypanosomiasis (AAT) are neglected tropical diseases generally caused by the same etiological agent, Trypanosoma brucei. Despite important advances in the reduction or disappearance of HAT cases, AAT represents a risky reservoir of the [...] Read more.
Human African Trypanosomiasis (HAT, sleeping sickness) and Animal African Trypanosomiasis (AAT) are neglected tropical diseases generally caused by the same etiological agent, Trypanosoma brucei. Despite important advances in the reduction or disappearance of HAT cases, AAT represents a risky reservoir of the infections. There is a strong need to control AAT, as is claimed by the European Commission in a recent document on the reservation of antimicrobials for human use. Control of AAT is considered part of the One Health approach established by the FAO program against African Trypanosomiasis. Under the umbrella of the One Health concepts, in this work, by analyzing the pharmacological properties of the therapeutic options against Trypanosoma brucei spp., we underline the need for clearer and more defined guidelines in the employment of drugs designed for HAT and AAT. Essential requirements are addressed to meet the challenge of drug use and drug resistance development. This approach shall avoid inter-species cross-resistance phenomena and retain drugs therapeutic activity. Full article
Show Figures

Figure 1

15 pages, 3698 KB  
Article
Steroidal Antimetabolites Protect Mice against Trypanosoma brucei
by Minu Chaudhuri, Ujjal K. Singha, Boden H. Vanderloop, Anuj Tripathi and W. David Nes
Molecules 2022, 27(13), 4088; https://doi.org/10.3390/molecules27134088 - 25 Jun 2022
Cited by 3 | Viewed by 2312
Abstract
Trypanosoma brucei, the causative agent for human African trypanosomiasis, is an emerging ergosterol-dependent parasite that produces chokepoint enzymes, sterol methyltransferases (SMT), not synthesized in their animal hosts that can regulate cell viability. Here, we report the lethal effects of two recently described [...] Read more.
Trypanosoma brucei, the causative agent for human African trypanosomiasis, is an emerging ergosterol-dependent parasite that produces chokepoint enzymes, sterol methyltransferases (SMT), not synthesized in their animal hosts that can regulate cell viability. Here, we report the lethal effects of two recently described natural product antimetabolites that disrupt Acanthamoeba sterol methylation and growth, cholesta-5,7,22,24-tetraenol (CHT) and ergosta-5,7,22,24(28)-tetraenol (ERGT) that can equally target T. brucei. We found that CHT/ERGT inhibited cell growth in vitro, yielding EC50 values in the low nanomolar range with washout experiments showing cidal activity against the bloodstream form, consistent with their predicted mode of suicide inhibition on SMT activity and ergosterol production. Antimetabolite treatment generated altered T. brucei cell morphology and death rapidly within hours. Notably, in vivo ERGT/CHT protected mice infected with T. brucei, doubling their survival time following daily treatment for 8–10 days at 50 mg/kg or 100 mg/kg. The current study demonstrates a new class of lead antibiotics, in the form of common fungal sterols, for antitrypanosomal drug development. Full article
(This article belongs to the Special Issue A Feasible Approach for Natural Products to Treatment of Diseases)
Show Figures

Figure 1

14 pages, 2736 KB  
Review
Polyamine Depletion Strategies in Cancer: Remodeling the Tumor Immune Microenvironment to Enhance Anti-Tumor Responses
by Alexander Chin, Charles J. Bieberich, Tracy Murray Stewart and Robert A. Casero
Med. Sci. 2022, 10(2), 31; https://doi.org/10.3390/medsci10020031 - 10 Jun 2022
Cited by 16 | Viewed by 5648
Abstract
Polyamine biosynthesis is frequently dysregulated in cancers, and enhanced flux increases intracellular polyamines necessary for promoting cell growth, proliferation, and function. Polyamine depletion strategies demonstrate efficacy in reducing tumor growth and increasing survival in animal models of cancer; however, mechanistically, the cell-intrinsic and [...] Read more.
Polyamine biosynthesis is frequently dysregulated in cancers, and enhanced flux increases intracellular polyamines necessary for promoting cell growth, proliferation, and function. Polyamine depletion strategies demonstrate efficacy in reducing tumor growth and increasing survival in animal models of cancer; however, mechanistically, the cell-intrinsic and cell-extrinsic alterations within the tumor microenvironment underlying positive treatment outcomes are not well understood. Recently, investigators have demonstrated that co-targeting polyamine biosynthesis and transport alters the immune landscape. Although the polyamine synthesis-targeting drug 2-difluoromethylornithine (DFMO) is well tolerated in humans and is FDA-approved for African trypanosomiasis, its clinical benefit in treating established cancers has not yet been fully realized; however, combination therapies targeting compensatory mechanisms have shown tolerability and efficacy in animal models and are currently being tested in clinical trials. As demonstrated in pre-clinical models, polyamine blocking therapy (PBT) reduces immunosuppression in the tumor microenvironment and enhances the therapeutic efficacy of immune checkpoint blockade (ICB). Thus, DFMO may sensitize tumors to other therapeutics, including immunotherapies and chemotherapies. Full article
Show Figures

Figure 1

Back to TopTop