Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = androstanediol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1381 KiB  
Review
Preclinical and Clinical Research Models of Prostate Cancer: A Brief Overview
by Debasish Basak, Lisney Gregori, Fatema Johora and Subrata Deb
Life 2022, 12(10), 1607; https://doi.org/10.3390/life12101607 - 14 Oct 2022
Cited by 6 | Viewed by 4652
Abstract
The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major public health concern worldwide. In this narrative review, we have summarized the characteristics of major in vitro and in vivo PCa models including their utility in developing [...] Read more.
The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major public health concern worldwide. In this narrative review, we have summarized the characteristics of major in vitro and in vivo PCa models including their utility in developing treatment strategies. Androgens, particularly, testosterone and dihydrotestosterone (DHT) activate the androgen receptor (AR) signaling pathway that facilitates the development and progression of castration resistant PCa. Several enzymes namely, CYP17A1, HSD17B, and SRD5A are essential to furnishing DHT from dehydroepiandrosterone in the classical pathway while DHT is formed from androstanediol in the backdoor pathway. The advancement in delineating the molecular heterogeneity of PCa has been possible through the development of several in vitro and in vivo research models. Generally, tissue culture models are advantageous to understand PCa biology and investigate the efficacy and toxicity of novel agents; nevertheless, animal models are indispensable to studying the PCa etiology and treatment since they can simulate the tumor microenvironment that plays a central role in initiation and progression of the disease. Moreover, the availability of several genetically engineered mouse models has made it possible to study the metastasis process. However, the conventional models are not devoid of limitations. For example, the lack of heterogeneity in tissue culture models and the variation of metastatic characteristics in xenograft models are obviously challenging. Additionally, due to the racial and ethnic disparities in PCa pathophysiology, a new model that can represent PCa encompassing different ethnicities is urgently needed. New models should continue to evolve to address the genetic and molecular complexities as well as to further elucidate the finer details of the steroidogenic pathway associated with PCa. Full article
(This article belongs to the Special Issue Prostate Cancer: 2nd Edition)
Show Figures

Figure 1

16 pages, 539 KiB  
Review
Non-Classic Disorder of Adrenal Steroidogenesis and Clinical Dilemmas in 21-Hydroxylase Deficiency Combined with Backdoor Androgen Pathway. Mini-Review and Case Report
by Marta Sumińska, Klaudia Bogusz-Górna, Dominika Wegner and Marta Fichna
Int. J. Mol. Sci. 2020, 21(13), 4622; https://doi.org/10.3390/ijms21134622 - 29 Jun 2020
Cited by 12 | Viewed by 6313
Abstract
Congenital adrenal hyperplasia (CAH) is the most common cause of primary adrenal insufficiency in children and adolescents. It comprises several clinical entities associated with mutations in genes, encoding enzymes involved in cortisol biosynthesis. The mutations lead to considerable (non-classic form) to almost complete [...] Read more.
Congenital adrenal hyperplasia (CAH) is the most common cause of primary adrenal insufficiency in children and adolescents. It comprises several clinical entities associated with mutations in genes, encoding enzymes involved in cortisol biosynthesis. The mutations lead to considerable (non-classic form) to almost complete (classic form) inhibition of enzymatic activity, reflected by different phenotypes and relevant biochemical alterations. Up to 95% cases of CAH are due to mutations in CYP21A2 gene and subsequent 21α-hydroxylase deficiency, characterized by impaired cortisol synthesis and adrenal androgen excess. In the past two decades an alternative (“backdoor”) pathway of androgens’ synthesis in which 5α-androstanediol, a precursor of the 5α-dihydrotestosterone, is produced from 17α-hydroxyprogesterone, with intermediate products 3α,5α-17OHP and androsterone, in the sequence and with roundabout of testosterone as an intermediate, was reported in some studies. This pathway is not always considered in the clinical assessment of patients with hyperandrogenism. The article describes the case of a 17-year-old female patient with menstrual disorders and androgenization (persistent acne, advanced hirsutism). Her serum dehydroepiandrosterone sulfate and testosterone were only slightly elevated, along with particularly high values for 5α-dihydrotestosterone. In 24 h urine collection, an increased excretion of 16α-OHDHEA—a dehydroepiandrosterone metabolite—and pregnanetriolone—a 17α-hydroxyprogesterone metabolite—were observed. The investigations that we undertook provided evidence that the girl suffered from non-classic 21α-hydroxylase deficiency with consequent enhancement of the androgen “backdoor” pathway in adrenals, peripheral tissues or both, using adrenal origin precursors. The paper presents diagnostic dilemmas and strategies to differentiate between various reasons for female hyperandrogenism, especially in childhood and adolescence. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 3234 KiB  
Review
Hormonal and Molecular Regulation of Phallus Differentiation in a Marsupial Tammar Wallaby
by Yu Chen and Marilyn B. Renfree
Genes 2020, 11(1), 106; https://doi.org/10.3390/genes11010106 - 16 Jan 2020
Cited by 1 | Viewed by 4270
Abstract
Congenital anomalies in phalluses caused by endocrine disruptors have gained a great deal of attention due to its annual increasing rate in males. However, the endocrine-driven molecular regulatory mechanism of abnormal phallus development is complex and remains largely unknown. Here, we review the [...] Read more.
Congenital anomalies in phalluses caused by endocrine disruptors have gained a great deal of attention due to its annual increasing rate in males. However, the endocrine-driven molecular regulatory mechanism of abnormal phallus development is complex and remains largely unknown. Here, we review the direct effect of androgen and oestrogen on molecular regulation in phalluses using the marsupial tammar wallaby, whose phallus differentiation occurs after birth. We summarize and discuss the molecular mechanisms underlying phallus differentiation mediated by sonic hedgehog (SHH) at day 50 pp and phallus elongation mediated by insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3), as well as multiple phallus-regulating genes expressed after day 50 pp. We also identify hormone-responsive long non-coding RNAs (lncRNAs) that are co-expressed with their neighboring coding genes. We show that the activation of SHH and IGF1, mediated by balanced androgen receptor (AR) and estrogen receptor 1 (ESR1) signalling, initiates a complex regulatory network in males to constrain the timing of phallus differentiation and to activate the downstream genes that maintain urethral closure and phallus elongation at later stages. Full article
(This article belongs to the Special Issue Marsupial Genetics and Genomics)
Show Figures

Figure 1

13 pages, 6977 KiB  
Article
Androgen and Oestrogen Affect the Expression of Long Non-Coding RNAs During Phallus Development in a Marsupial
by Yu Chen, Yoko Kuroki, Geoff Shaw, Andrew J. Pask, Hongshi Yu, Atsushi Toyoda, Asao Fujiyama and Marilyn B. Renfree
Non-Coding RNA 2019, 5(1), 3; https://doi.org/10.3390/ncrna5010003 - 30 Dec 2018
Cited by 8 | Viewed by 4175
Abstract
There is increasing evidence that long non-coding RNAs (lncRNAs) are important for normal reproductive development, yet very few lncRNAs have been identified in phalluses so far. Unlike eutherians, phallus development in the marsupial tammar wallaby occurs post-natally, enabling manipulation not possible in eutherians [...] Read more.
There is increasing evidence that long non-coding RNAs (lncRNAs) are important for normal reproductive development, yet very few lncRNAs have been identified in phalluses so far. Unlike eutherians, phallus development in the marsupial tammar wallaby occurs post-natally, enabling manipulation not possible in eutherians in which differentiation occurs in utero. We treated with sex steroids to determine the effects of androgen and oestrogen on lncRNA expression during phallus development. Hormonal manipulations altered the coding and non-coding gene expression profile of phalluses. We identified several predicted co-regulatory lncRNAs that appear to be co-expressed with the hormone-responsive candidate genes regulating urethral closure and phallus growth, namely IGF1, AR and ESR1. Interestingly, more than 50% of AR-associated coding genes and lncRNAs were also associated with ESR1. In addition, we identified and validated three novel co-regulatory and hormone-responsive lncRNAs: lnc-BMP5, lnc-ZBTB16 and lncRSPO4. Lnc-BMP5 was detected in the urethral epithelium of male phalluses and was downregulated by oestrogen in males. Lnc-ZBTB16 was downregulated by oestrogen treatment in male phalluses at day 50 post-partum (pp). LncRSPO4 was downregulated by adiol treatment in female phalluses but increased in male phalluses after castration. Thus, the expression pattern and hormone responsiveness of these lncRNAs suggests a physiological role in the development of the phallus. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

Back to TopTop