Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = anamorelin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2049 KB  
Review
Updates in Cancer Cachexia: Clinical Management and Pharmacologic Interventions
by Sudeep Pandey, Lauren Bradley and Egidio Del Fabbro
Cancers 2024, 16(9), 1696; https://doi.org/10.3390/cancers16091696 - 27 Apr 2024
Cited by 19 | Viewed by 11544
Abstract
Despite a better understanding of the mechanisms causing cancer cachexia (CC) and development of promising pharmacologic and supportive care interventions, CC persists as an underdiagnosed and undertreated condition. CC contributes to fatigue, poor quality of life, functional impairment, increases treatment related toxicity, and [...] Read more.
Despite a better understanding of the mechanisms causing cancer cachexia (CC) and development of promising pharmacologic and supportive care interventions, CC persists as an underdiagnosed and undertreated condition. CC contributes to fatigue, poor quality of life, functional impairment, increases treatment related toxicity, and reduces survival. The core elements of CC such as weight loss and poor appetite should be identified early. Currently, addressing contributing conditions (hypothyroidism, hypogonadism, and adrenal insufficiency), managing nutrition impact symptoms leading to decreased oral intake (nausea, constipation, dysgeusia, stomatitis, mucositis, pain, fatigue, depressed mood, or anxiety), and the addition of pharmacologic agents when appropriate (progesterone analog, corticosteroids, and olanzapine) is recommended. In Japan, the clinical practice has changed based on the availability of Anamorelin, a ghrelin receptor agonist that improved lean body mass, weight, and appetite-related quality of life (QoL) compared to a placebo, in phase III trials. Other promising therapeutic agents currently in trials include Espindolol, a non-selective β blocker and a monoclonal antibody to GDF-15. In the future, a single therapeutic agent or perhaps multiple medications targeting the various mechanisms of CC may prove to be an effective strategy. Ideally, these medications should be incorporated into a multimodal interdisciplinary approach that includes exercise and nutrition. Full article
(This article belongs to the Special Issue Advances in Supportive and Palliative Care in Cancer)
Show Figures

Figure 1

14 pages, 5481 KB  
Article
Exploring Metabolic Pathways of Anamorelin, a Selective Agonist of the Growth Hormone Secretagogue Receptor, via Molecular Networking
by Young Beom Kwak, Jeong In Seo and Hye Hyun Yoo
Pharmaceutics 2023, 15(12), 2700; https://doi.org/10.3390/pharmaceutics15122700 - 29 Nov 2023
Cited by 6 | Viewed by 3099
Abstract
In this study, we delineated the poorly characterized metabolism of anamorelin, a growth hormone secretagogue receptor agonist, in vitro using human liver microsomes (HLM), based on classical molecular networking (MN) and feature-based molecular networking (FBMN) from the Global Natural Products Social Molecular Networking [...] Read more.
In this study, we delineated the poorly characterized metabolism of anamorelin, a growth hormone secretagogue receptor agonist, in vitro using human liver microsomes (HLM), based on classical molecular networking (MN) and feature-based molecular networking (FBMN) from the Global Natural Products Social Molecular Networking platform. Following the in vitro HLM reaction, the MN analysis showed 11 neighboring nodes whose information propagated from the node corresponding to anamorelin. The FBMN analysis described the separation of six nodes that the MN analysis could not achieve. In addition, the similarity among neighboring nodes could be discerned via their respective metabolic pathways. Collectively, 18 metabolites (M1–M12) were successfully identified, suggesting that the metabolic pathways involved were demethylation, hydroxylation, dealkylation, desaturation, and N-oxidation, whereas 6 metabolites (M13a*-b*, M14a*-b*, and M15a*-b*) remained unidentified. Furthermore, the major metabolites detected in HLM, M1 and M7, were dissimilar from those observed in the CYP3A4 isozyme assay, which is recognized to be markedly inhibited by anamorelin. Specifically, M7, M8, and M9 were identified as the major metabolites in the CYP3A4 isozyme assay. Therefore, a thorough investigation of metabolism is imperative for future in vivo studies. These findings may offer prospective therapeutic opportunities for anamorelin. Full article
Show Figures

Figure 1

11 pages, 1038 KB  
Article
Metabolism Study of Anamorelin, a GHSR1a Receptor Agonist Potentially Misused in Sport, with Human Hepatocytes and LC-HRMS/MS
by Prince Sellase Gameli, Omayema Taoussi, Giuseppe Basile, Jeremy Carlier and Francesco Paolo Busardò
Metabolites 2023, 13(8), 949; https://doi.org/10.3390/metabo13080949 - 15 Aug 2023
Cited by 8 | Viewed by 3317
Abstract
Anamorelin, developed for the treatment of cancer cachexia, is an orally active medication that improves appetite and food intake, thereby increasing body mass and physical functioning. It is classified as a growth hormone secretagogue and strictly monitored by the World Anti-Doping Agency (WADA), [...] Read more.
Anamorelin, developed for the treatment of cancer cachexia, is an orally active medication that improves appetite and food intake, thereby increasing body mass and physical functioning. It is classified as a growth hormone secretagogue and strictly monitored by the World Anti-Doping Agency (WADA), owing to its anabolic enhancing potential. Identifying anamorelin and/or metabolite biomarkers of consumption is critical in doping controls. However, there are currently no data available on anamorelin human metabolic fate. The aim of this study was to investigate and identify biomarkers characteristic of anamorelin intake using in silico metabolite predictions with GLORYx, in vitro incubation with 10-donor-pooled human hepatocytes, liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) analysis, and data processing with Thermo Scientific’s Compound Discoverer. In silico prediction resulted in N-acetylation at the methylalanyl group as the main transformation (score, 88%). Others including hydroxylation at the indole substructure, and oxidation and N-demethylation at the trimethylhydrazino group were predicted (score, ≤36%). Hepatocyte incubations resulted in 14 phase I metabolites formed through N-demethylation at the trimethylhydrazino group, N-dealkylation at the piperidine ring, and oxidation at the indole and methylalanyl groups; and two phase II glucuronide conjugates occurring at the indole. We propose four metabolites detected as specific biomarkers for toxicological screening. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Graphical abstract

17 pages, 3845 KB  
Article
Supplementary Oral Anamorelin Mitigates Anorexia and Skeletal Muscle Atrophy Induced by Gemcitabine Plus Cisplatin Systemic Chemotherapy in a Mouse Model
by Makito Miyake, Shunta Hori, Yoshitaka Itami, Yuki Oda, Takuya Owari, Tomomi Fujii, Sayuri Ohnishi, Yosuke Morizawa, Daisuke Gotoh, Yasushi Nakai, Satoshi Anai, Kazumasa Torimoto, Nobumichi Tanaka and Kiyohide Fujimoto
Cancers 2020, 12(7), 1942; https://doi.org/10.3390/cancers12071942 - 17 Jul 2020
Cited by 17 | Viewed by 4506
Abstract
Chemotherapy-induced adverse effects can reduce the relative dose intensity and quality of life. In this study, we investigated the potential benefit of supplementary anamorelin and 5-aminolevulinic acid (5-ALA) as preventive interventions against a gemcitabine and cisplatin (GC) combination chemotherapy-induced adverse effects in a [...] Read more.
Chemotherapy-induced adverse effects can reduce the relative dose intensity and quality of life. In this study, we investigated the potential benefit of supplementary anamorelin and 5-aminolevulinic acid (5-ALA) as preventive interventions against a gemcitabine and cisplatin (GC) combination chemotherapy-induced adverse effects in a mouse model. Non-cancer-bearing C3H mice were randomly allocated as follows and treated for 2 weeks—(1) non-treated control, (2) oral anamorelin alone, (3) oral 5-ALA alone, (4) gemcitabine and cisplatin (GC) chemotherapy, (5) GC plus anamorelin, and (6) GC plus 5-ALA. GC chemotherapy significantly decreased body weight, food intake, skeletal muscle mass and induced severe gastric mucositis, which resulted in decreased ghrelin production and blood ghrelin level. The supplementation of oral anamorelin to GC chemotherapy successfully mitigated decrease of food intake during the treatment period and body weight loss at day 8. In addition, analysis of the resected muscles and stomach revealed that anamorelin suppressed chemotherapy-induced skeletal muscle atrophy by mediating the downregulation of forkhead box protein O-1 (FOXO1)/atrogin-1 signaling and gastric damage. Our findings suggest the preventive effect of anamorelin against GC combination chemotherapy, which was selected for patients with some types of advanced malignancies in clinical practice. Full article
(This article belongs to the Special Issue Efforts to Mitigate the Toxicity of Cancer Therapeutics)
Show Figures

Figure 1

16 pages, 998 KB  
Review
Efficacy of Anamorelin, a Novel Non-Peptide Ghrelin Analogue, in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) and Cachexia—Review and Expert Opinion
by David C. Currow, Matthew Maddocks, David Cella and Maurizio Muscaritoli
Int. J. Mol. Sci. 2018, 19(11), 3471; https://doi.org/10.3390/ijms19113471 - 5 Nov 2018
Cited by 27 | Viewed by 8226
Abstract
Cancer cachexia is a multilayered syndrome consisting of the interaction between tumor cells and the host, at times modulated by the pharmacologic treatments used for tumor control. Key cellular and soluble mediators, activated because of this interaction, induce metabolic and nutritional alterations. This [...] Read more.
Cancer cachexia is a multilayered syndrome consisting of the interaction between tumor cells and the host, at times modulated by the pharmacologic treatments used for tumor control. Key cellular and soluble mediators, activated because of this interaction, induce metabolic and nutritional alterations. This results in mass and functional changes systemically, and can lead to increased morbidity and reduced length and quality of life. For most solid malignancies, a cure remains an unrealistic goal, and targeting the key mediators is ineffective because of their heterogeneity/redundancy. The most beneficial approach is to target underlying systemic mechanisms, an approach where the novel non-peptide ghrelin analogue anamorelin has the advantage of stimulating appetite and possibly food intake, as well as promoting anabolism and significant muscle mass gain. In the ROMANA studies, compared with placebo, anamorelin significantly increased lean body mass in non-small cell lung cancer (NSCLC) patients. Body composition analysis suggested that anamorelin is an active anabolic agent in patients with NSCLC, without the side effects of other anabolic drugs. Anamorelin also induced a significant and meaningful improvement of anorexia/cachexia symptoms. The ROMANA trials have provided unprecedented knowledge, highlighting the therapeutic effects of anamorelin as an initial, but significant, step toward directly managing cancer cachexia. Full article
(This article belongs to the Special Issue Integrative Physiology of Ghrelin and Synthetic GH Secretagogues)
Show Figures

Figure 1

Back to TopTop