Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = amine functionalised mesoporous silica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2036 KiB  
Communication
Eco-Friendly Synthesis of Organo-Functionalized Mesoporous Silica for the Condensation Reaction
by Surjyakanta Rana, José J. Velázquez and Sreekantha B. Jonnalagadda
Catalysts 2022, 12(10), 1212; https://doi.org/10.3390/catal12101212 - 11 Oct 2022
Cited by 3 | Viewed by 2115
Abstract
Amine-functionalised mesoporous silica was prepared by the sonication method, a green approach. The method used aminopropyl trimethoxy silane as the amine source and tetraethyl orthosilicate as a silica source. We distinguished its performance compared to the amine-functionalised mesoporous silica sample prepared by the [...] Read more.
Amine-functionalised mesoporous silica was prepared by the sonication method, a green approach. The method used aminopropyl trimethoxy silane as the amine source and tetraethyl orthosilicate as a silica source. We distinguished its performance compared to the amine-functionalised mesoporous silica sample prepared by the co-condensation method. The sonication method offered better catalytic activity. The amine-functionalised material was fully characterised by different characterisation techniques such as X-ray diffraction, FTIR, CHN, and SEM. The 12.8% of amine-functionalised material (12.A-MCM-41-S) gave excellent selectivity (98%) and conversion (95%). The activity remained almost unchanged for four cycles. Full article
(This article belongs to the Special Issue Advanced Materials for Application in Catalysis)
Show Figures

Graphical abstract

21 pages, 4558 KiB  
Article
Guanidine–Curcumin Complex-Loaded Amine-Functionalised Hollow Mesoporous Silica Nanoparticles for Breast Cancer Therapy
by Thimma Mohan Viswanathan, Kaniraja Chitradevi, Azar Zochedh, Ramakrishnan Vijayabhaskar, Sureba Sukumaran, Selvaraj Kunjiappan, Nachimuthu Senthil Kumar, Krishnan Sundar, Ewa Babkiewicz, Piotr Maszczyk and Thandavarayan Kathiresan
Cancers 2022, 14(14), 3490; https://doi.org/10.3390/cancers14143490 - 18 Jul 2022
Cited by 37 | Viewed by 4339
Abstract
The current study focuses on developing a tumour-targeted functionalised nanocarrier that wraps hollow mesoporous silica nanoparticles. The guanidine carbonate and curcumin are immobilised on the surface of 3-aminopropyl-triethoxy silane (APTES)-decorated hollow mesoporous silica nanoparticles (HMSNP), as confirmed through XPS and NMR analysis. XPS [...] Read more.
The current study focuses on developing a tumour-targeted functionalised nanocarrier that wraps hollow mesoporous silica nanoparticles. The guanidine carbonate and curcumin are immobilised on the surface of 3-aminopropyl-triethoxy silane (APTES)-decorated hollow mesoporous silica nanoparticles (HMSNP), as confirmed through XPS and NMR analysis. XPS analysis demonstrates that the shape of the hysteresis loops is modified and that pore volume and pore diameter are consequently decreased compared to control. Guanidine (85%) and guanidine–curcumin complex (90%) were successfully encapsulated in HMSNAP and showed a 90% effective and sustained release at pH 7.4 for up to 72 h. Acridine orange/ethidium bromide dual staining determined that GuC-HMNSAP induced more late apoptosis and necrosis at 48 and 72 h compared with Gu-HMNSAP-treated cells. Molecular investigation of guanidine-mediated apoptosis was analysed using western blotting. It was found that cleaved caspases, c-PARP, and GSK-3β (Ser9) had increased activity in MCF-7 cells. GuC-HMSNAP increased the activity of phosphorylation of oncogenic proteins such as Akt (Ser473), c-Raf (Ser249), PDK1 (Ser241), PTEN (Ser380), and GSK-3β (Ser9), thus inducing cell death in MCF-7 cells. Altogether, our findings confirm that GuC-HMNSAP induces cell death by precisely associating with tumour-suppressing proteins, which may lead to new therapeutic approaches for breast cancer therapy. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

14 pages, 3015 KiB  
Communication
Molecular Level Characterisation of the Surface of Carbohydrate-Functionalised Mesoporous silica Nanoparticles (MSN) as a Potential Targeted Drug Delivery System via High Resolution Magic Angle Spinning (HR-MAS) NMR Spectroscopy
by Karolina Krajewska, Anna M. Gołkowska, Maciej Nowak, Marta Kozakiewicz-Latała, Wojciech Pudło, Andrzej Żak, Bożena Karolewicz, Yaroslav Z. Khimyak and Karol P. Nartowski
Int. J. Mol. Sci. 2022, 23(11), 5906; https://doi.org/10.3390/ijms23115906 - 25 May 2022
Cited by 4 | Viewed by 2739
Abstract
Atomistic level characterisation of external surface species of mesoporous silica nanoparticles (MSN) poses a significant analytical challenge due to the inherently low content of grafted ligands. This study proposes the use of HR-MAS NMR spectroscopy for a molecular level characterisation of the external [...] Read more.
Atomistic level characterisation of external surface species of mesoporous silica nanoparticles (MSN) poses a significant analytical challenge due to the inherently low content of grafted ligands. This study proposes the use of HR-MAS NMR spectroscopy for a molecular level characterisation of the external surface of carbohydrate-functionalised nanoparticles. MSN differing in size (32 nm, 106 nm, 220 nm) were synthesised using the sol-gel method. The synthesised materials displayed narrow particle size distribution (based on DLS and TEM results) and a hexagonal arrangement of the pores with a diameter of ca. 3 nm as investigated with PXRD and N2 physisorption. The surface of the obtained nanoparticles was functionalised with galactose and lactose using reductive amination as confirmed by FTIR and NMR techniques. The functionalisation of the particles surface did not alter the pore architecture, structure or morphology of the materials as confirmed with TEM imaging. HR-MAS NMR spectroscopy was used for the first time to investigate the structure of the functionalised MSN suspended in D2O. Furthermore, lactose was successfully attached to the silica without breaking the glycosidic bond. The results demonstrate that HR-MAS NMR can provide detailed structural information on the organic functionalities attached at the external surface of MSN within short experimental times. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Healthcare)
Show Figures

Figure 1

Back to TopTop