Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = aluminium tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3370 KiB  
Article
Effect of Anodic Aluminium Oxide Structure on the Electroless Ni-P Distribution into Nanopores
by Boriana Tzaneva, Olena Okhay, Vesselina Milusheva, Stela Atanasova-Vladimirova, João Ventura and Alexander Tkach
Materials 2025, 18(16), 3797; https://doi.org/10.3390/ma18163797 - 13 Aug 2025
Viewed by 310
Abstract
The anodization of aluminium/aluminium alloys is widely used to produce anodic nanoporous networks for metal layered structures, with applications in energy harvesting technologies and sensor systems. Anodic aluminium oxide (AAO) with thickness of ~10 μm and average pore diameter of 13, 33, and [...] Read more.
The anodization of aluminium/aluminium alloys is widely used to produce anodic nanoporous networks for metal layered structures, with applications in energy harvesting technologies and sensor systems. Anodic aluminium oxide (AAO) with thickness of ~10 μm and average pore diameter of 13, 33, and 95 nm is prepared by tuning acids and voltages, being further used for electroless nickel deposition, performed for 10 min using conventional electrolyte with sodium hypophosphite reductor and pH 4.5. The formation of Ni nanotubes or nanorods is found to be strongly dependent on AAO pore size. Ni is detected in the whole pore depth and found to form 5–7 μm long continuous tube-like structures only in AAO with pore diameter of 95 nm, being kept just on the AAO top for smaller pore diameters. Nickel distribution in pores along cross-section of AAO is studied as well revealing continuously decreasing ratio to phosphorus amount. The magnetic properties of the resulting Ni 3D structure of a flat conductive layer and nanotubes perpendicular to it do not show significant differences in parallelly and perpendicularly oriented magnetic fields. These observations are discussed considering possible formation mechanisms for an electroless deposited Ni layer on AAO with different structures. Full article
Show Figures

Figure 1

20 pages, 7280 KiB  
Article
Optimisation of Aluminium Alloy Variable Diameter Tubes Hydroforming Process Based on Machine Learning
by Yong Xu, Xuewei Zhang, Wenlong Xie, Shihong Zhang, Yaqiang Tian and Liansheng Chen
Appl. Sci. 2025, 15(9), 5045; https://doi.org/10.3390/app15095045 - 1 May 2025
Viewed by 499
Abstract
To predict the forming behaviour of aluminium alloy variable diameter tubes during hydroforming, a genetic algorithm-enhanced particle swarm optimisation (GA-PSO) is used to optimise a backpropagation neural network (BP-NN). A fast prediction model based on the GA-PSO-BP neural network for the hydroforming of [...] Read more.
To predict the forming behaviour of aluminium alloy variable diameter tubes during hydroforming, a genetic algorithm-enhanced particle swarm optimisation (GA-PSO) is used to optimise a backpropagation neural network (BP-NN). A fast prediction model based on the GA-PSO-BP neural network for the hydroforming of aluminium alloy variable diameter tubes was established. The loading paths (internal pressure, axial feeds, and coefficient of friction) were randomly sampled using the Latin hypercube random sampling method. The minimum wall thickness, maximum wall thickness, and maximum expansion height of the formed tubes are included in the main evaluation factors of the forming results. A variety of machine learning algorithms are used to predict, and the prediction results are compared with the finite element model in terms of error. The maximum average absolute value error and mean square error of the proposed model are less than 0.2, which improves the accuracy by 20.4% compared to the unoptimised PSO-BP neural network algorithm. The maximum error between simulated and predicted results is within 4%. The model allows effective prediction of the hydroforming effect of aluminium alloy variable diameter tubes and improves the computational rate and model accuracy of the model. The same process parameters are experimentally verified, the minimum wall thickness of the formed part is 1.27 mm, the maximum wall thickness is 1.53 mm, and the maximum expansion height is 5.11 mm. The maximum thinning and the maximum thickening rate comply with the standard of hydroforming, and the tube has good formability without obvious defects. Full article
(This article belongs to the Special Issue AI-Enhanced Metal/Alloy Forming)
Show Figures

Figure 1

15 pages, 7269 KiB  
Article
Investigation of the Effect of Coil Current Waveform on Electromagnetic Tube Forming
by Fangxiong Deng, Xiaofei Xu, Yang Wang, Zhiyong Yu and Can Jiang
Metals 2025, 15(4), 367; https://doi.org/10.3390/met15040367 - 27 Mar 2025
Viewed by 418
Abstract
The coil current frequency and waveform have a great impact on the forming performance of the workpiece in electromagnetic forming. However, existing research is mostly limited to analyzing the influence of either frequency or waveform on the forming outcome independently, which makes it [...] Read more.
The coil current frequency and waveform have a great impact on the forming performance of the workpiece in electromagnetic forming. However, existing research is mostly limited to analyzing the influence of either frequency or waveform on the forming outcome independently, which makes it challenging to fully reveal the intrinsic relationship between current parameters and forming results. In this work, three discharge circuit structures are developed to generate different coil currents composed of various frequencies and waveforms, and their effects on deformation of AA6061 Aluminium alloy tube are systematically investigated through numerical and experimental approaches. Results show that a conventional circuit can generate an attenuated oscillating sinusoidal waveform consisting of several pulse half-waves, while a circuit composed of a thyristor switch can generate a half-wave current, and a circuit consisting of a crowbar circuit can generate a current with a slow decay rate. Further, it is found that at a high-frequency discharge, a current having a slow decay rate is favorable for forming efficiency, as well as reducing coil temperature, while at a low-frequency discharge, the current waveform has almost no effect on the forming efficiency; thus, a half-wave current is highly recommended to significantly reduce the coil temperature. The obtained results are of great significance in guiding the design of coil currents and optimizing electromagnetic forming technology. Full article
Show Figures

Figure 1

14 pages, 2419 KiB  
Article
Computational Methodology for the Development of Wrinkled Tubes by Plastic Deformation
by Samara C. R. Soares, Gilmar C. Silva and Elza M. M. Fonseca
Appl. Sci. 2024, 14(23), 11126; https://doi.org/10.3390/app142311126 - 29 Nov 2024
Viewed by 964
Abstract
Traditional methods for wrinkled tubes involve welding processes and additional elements, such as plates, screws, rivets, and guides. Considering all the limitations of these processes, this work aims to propose a methodology that allows for maximising the manufacturing process of carbon steel tube [...] Read more.
Traditional methods for wrinkled tubes involve welding processes and additional elements, such as plates, screws, rivets, and guides. Considering all the limitations of these processes, this work aims to propose a methodology that allows for maximising the manufacturing process of carbon steel tube joints with seaming using cold forming and minimising the cost of the final product. Therefore, the present work aims to develop a computational model, based on the finite element method, to optimise the deformation process of T6 Aluminium tubes (ø 45 × ø 38.6 mm) with a length of 120 mm. The method uses a steel die with cavities to achieve wrinkled tubes by a forming process. This numerical study was carried out using the Ansys® 2022 R2 software. A nonlinear material and an incremental structural analysis were used. The applied methodology allowed the optimisation of process parameters, the application of forces during tube deformation, the geometry of the die cavity, boundary conditions, and mesh discretisation. Numerical modelling was carried out using the axial symmetry of the assembly (tube–die), enabling a simplified and efficient execution of the final tube geometry. The results were analysed based on the maximum pressure applied to the tube, and the vertical and horizontal displacements of the deformed component, thus obtaining the tube flow with complete filling inside the die cavity at the end of deformation. The die geometry that produced the best results presented a cavity with a radius of curvature of 3 mm, 6 mm in height, and with a depth of 4 mm. The optimised result of the die geometry generated satisfactory results, with the displacement on the x-axis of the tube of approximately 2.85 mm, ensuring the filling of the cavity at the end of the process. For this, the maximum pressure exerted on the tube was approximately 374 MPa. Full article
Show Figures

Figure 1

18 pages, 1851 KiB  
Article
Comparative Study of Life-Cycle Environmental and Cost Performance of Aluminium Alloy–Concrete Composite Columns
by Shafayat Bin Ali, George S. Kamaris, Michaela Gkantou and Yue Huang
Sustainability 2024, 16(21), 9252; https://doi.org/10.3390/su16219252 - 24 Oct 2024
Cited by 2 | Viewed by 2189
Abstract
As is widely known, the construction industry is one of the sectors with a large contribution to global carbon emissions. Despite numerous efforts in the construction industry to develop low-carbon materials, there is a limited number of studies quantifying and presenting the overall [...] Read more.
As is widely known, the construction industry is one of the sectors with a large contribution to global carbon emissions. Despite numerous efforts in the construction industry to develop low-carbon materials, there is a limited number of studies quantifying and presenting the overall environmental impact when these materials are applied in a construction project as structural members. To address this gap, this study focuses on assessing the life-cycle performance of novel structural aluminium alloy–concrete composite columns. In this paper, the environmental impacts and economic aspects of a concrete-filled aluminium alloy tubular (CFAT) column and a concrete-filled double-skin aluminium alloy tubular (CFDSAT) column were assessed using life-cycle assessment (LCA) and life-cycle cost analysis (LCCA) approaches, respectively. The cradle-to-grave system boundary is considered for these analyses to cover the entire life-cycle. A concrete-filled steel tubular (CFST) column is also assessed for reference. All columns are designed to have the same load-carrying capacity and, thus, are compared on a level-playing basis. A comparison is also made of the self-weight of these columns. In particular, the self-weight of the CFST column is reduced by around 17% when the steel tube is replaced by an aluminium alloy tube, and decreased by 47% when the double-skin technique is adopted in CFDSAT columns. The LCA results indicate that the CO2 emission of CFST and CFAT is almost the same, which is 21% less than the CFDSAT columns due to the use of high aluminium in the latter. The LCCA results show that the total life-cycle cost of CFAT and CFDSAT columns is around 29% and 14% lower, respectively, than that of the CFST column. Finally, a sensitivity analysis was carried out to evaluate the effects of data and assumptions on the life-cycle performance of the examined columns. Full article
Show Figures

Figure 1

23 pages, 6430 KiB  
Review
Bio-Inspired Strategies Are Adaptable to Sensors Manufactured on the Moon
by Alex Ellery
Biomimetics 2024, 9(8), 496; https://doi.org/10.3390/biomimetics9080496 - 15 Aug 2024
Cited by 1 | Viewed by 2331
Abstract
Bio-inspired strategies for robotic sensing are essential for in situ manufactured sensors on the Moon. Sensors are one crucial component of robots that should be manufactured from lunar resources to industrialize the Moon at low cost. We are concerned with two classes of [...] Read more.
Bio-inspired strategies for robotic sensing are essential for in situ manufactured sensors on the Moon. Sensors are one crucial component of robots that should be manufactured from lunar resources to industrialize the Moon at low cost. We are concerned with two classes of sensor: (a) position sensors and derivatives thereof are the most elementary of measurements; and (b) light sensing arrays provide for distance measurement within the visible waveband. Terrestrial approaches to sensor design cannot be accommodated within the severe limitations imposed by the material resources and expected manufacturing competences on the Moon. Displacement and strain sensors may be constructed as potentiometers with aluminium extracted from anorthite. Anorthite is also a source of silica from which quartz may be manufactured. Thus, piezoelectric sensors may be constructed. Silicone plastic (siloxane) is an elastomer that may be derived from lunar volatiles. This offers the prospect for tactile sensing arrays. All components of photomultiplier tubes may be constructed from lunar resources. However, the spatial resolution of photomultiplier tubes is limited so only modest array sizes can be constructed. This requires us to exploit biomimetic strategies: (i) optical flow provides the visual navigation competences of insects implemented through modest circuitry, and (ii) foveated vision trades the visual resolution deficiencies with higher resolution of pan-tilt motors enabled by micro-stepping. Thus, basic sensors may be manufactured from lunar resources. They are elementary components of robotic machines that are crucial for constructing a sustainable lunar infrastructure. Constraints imposed by the Moon may be compensated for using biomimetic strategies which are adaptable to non-Earth environments. Full article
(This article belongs to the Special Issue A Systems Approach to BioInspired Design)
Show Figures

Figure 1

20 pages, 8380 KiB  
Article
Friction Investigation of Closed-Cell Aluminium Foam during Radial-Constrained Test
by Jozsef Kertesz and Tünde Anna Kovacs
Materials 2024, 17(13), 3344; https://doi.org/10.3390/ma17133344 - 5 Jul 2024
Viewed by 1418
Abstract
The energy-absorbing capacity and friction phenomena of different closed-cell aluminium foam-filled Al tube types are investigated through experimental compression tests. Concerning the kind of investigation, free, radial-constrained and friction tests occurred. The radial-constrained compression test results confirm that the process requires significantly more [...] Read more.
The energy-absorbing capacity and friction phenomena of different closed-cell aluminium foam-filled Al tube types are investigated through experimental compression tests. Concerning the kind of investigation, free, radial-constrained and friction tests occurred. The radial-constrained compression test results confirm that the process requires significantly more compression energy than without the constrain. Pushing away different pre-compressed foams inside the aluminium tube, the static and kinematic frictional resistances can be determined and the energy required to move them can be calculated. Knowing the value of the energy required for the frictional resistance, we can obtain how much of the energy surplus in radially inhibited compression is caused by the friction phenomena. The main goal present study is to reveal the magnitude of friction between the foam and the wall of the tube during the radially constrained test. The investigation used 0.4 and 0.7 g/cm3 density closed-cell aluminium foam whilst a compressive test was applied where the force–displacement data were recorded to calculate the absorbed energy due to friction. Considering the results of the test, it can be stated that 18% of the invested energy was used to overcome friction in the case of lighter foam and almost 23% with 0.7 g/cm3 foam during the radial-constrained test. Full article
Show Figures

Figure 1

12 pages, 3238 KiB  
Article
On the Efficiency of Air-Cooled Metal Foam Heat Exchangers
by Thomas Fiedler, Nima Movahedi and Rohan Stanger
Metals 2024, 14(7), 750; https://doi.org/10.3390/met14070750 - 25 Jun 2024
Cited by 3 | Viewed by 1865
Abstract
This study analyses the heat transfer performance of metal foam heat exchangers through experimental measurements. Using counter-gravity infiltration casting, open-cell aluminium foam elements were manufactured to embed a copper tube for internal mass flow containment. Heat transfer experiments were conducted under natural and [...] Read more.
This study analyses the heat transfer performance of metal foam heat exchangers through experimental measurements. Using counter-gravity infiltration casting, open-cell aluminium foam elements were manufactured to embed a copper tube for internal mass flow containment. Heat transfer experiments were conducted under natural and forced convection conditions, with the airflow controlled in a wind tunnel. A stream of warm water within the internal foam component served as the heat source, transferring thermal energy to the surrounding air flowing through the external foam component of the heat exchanger. The results showed a significantly enhanced heat transfer performance with aluminium foam compared to a single copper tube. Thermal resistance models were developed to elucidate the heat transfer mechanisms, highlighting the effectiveness of air-cooled metal foam heat exchangers. These findings underscore the potential of metal foam heat exchangers as cost-effective alternatives for various thermal management applications. Full article
Show Figures

Figure 1

15 pages, 5465 KiB  
Article
Finite Element Simulation and Experimental Verification of Circular Tube Nosing through Conical Dies
by Walid M. Shewakh and Ibrahim M. Hassab-Allah
Appl. Sci. 2024, 14(6), 2337; https://doi.org/10.3390/app14062337 - 11 Mar 2024
Viewed by 1183
Abstract
The process of tube nosing is a delicate art that involves forming the end of a tubular part without causing any collapse, buckling, or wrinkling. A recent study has delved into the different modes of failure that can occur during this process and [...] Read more.
The process of tube nosing is a delicate art that involves forming the end of a tubular part without causing any collapse, buckling, or wrinkling. A recent study has delved into the different modes of failure that can occur during this process and has determined the limits of tube nosing through the use of plasticity and thin/thick-walled tube theories. A finite element simulation was developed to replicate the cold-nosing process using conical dies to validate these theories. The results were compared to experimental outcomes for mild steel, hard steel, and annealed aluminium tubes to ensure accuracy. Through this analysis, we identified and confirmed the modes of failure that can restrict the plastic deformation for the tube nosing process. The outcomes were compared to analytical expressions and showed excellent agreement with the experiments, proving that these expressions provide a reliable reference guide for predicting the limits of the tube-nosing process. The FE simulation method also accurately models critical buckling stresses, nosing loads, and failure modes. Full article
(This article belongs to the Special Issue Advanced Metal Forming and Smart Manufacturing Processes)
Show Figures

Figure 1

22 pages, 6459 KiB  
Article
Acoustic Applications of a Foamed Geopolymeric-Architected Metamaterial
by Giuseppe Ciaburro, Gino Iannace, Laura Ricciotti, Antonio Apicella, Valeria Perrotta and Raffaella Aversa
Appl. Sci. 2024, 14(3), 1207; https://doi.org/10.3390/app14031207 - 31 Jan 2024
Cited by 8 | Viewed by 2064
Abstract
The paper compares and evaluates the influence of the presence of perforations on the sound absorption coefficient (SAC) of a negative stiffness metamaterial based on a foamed ceramic geopolymer. Chemical–physical, microstructural, dynamic–mechanical, and sound characterisations are presented. A rigid, lightweight geopolymeric porous material [...] Read more.
The paper compares and evaluates the influence of the presence of perforations on the sound absorption coefficient (SAC) of a negative stiffness metamaterial based on a foamed ceramic geopolymer. Chemical–physical, microstructural, dynamic–mechanical, and sound characterisations are presented. A rigid, lightweight geopolymeric porous material has been prepared using an inorganic/organic monomeric mixture containing oligomeric sialates and siloxanes foamed with aluminium powder. This process results in an amorphous rigid light foam with an apparent 180 Kg/m3 density and a 78% open-pore. The viscoelastic characterisation by dynamic mechanical analysis (DMA) carried out from 10−3 to 103 Hz indicates the behaviour of a mechanical metamaterial with negative stiffness enabling ultrahigh energy absorption at straining frequencies from 300 to 1000 Hz. The material loss factor (the ratio of dissipative/elastic shear moduli) is about 0.03 (essentially elastic behaviour) for frequencies up to 200 Hz to suddenly increase up to a value of six at 1000 Hz (highly dissipative behaviour). The corresponding storage and loss moduli were 8.2 MPa and 20 MPa, respectively. Impedance tube acoustic absorption measurements on perforated and unperforated specimens highlighted the role of perforation-resonant cavities in enhancing sound absorption efficiency, particularly within the specified frequency band where the mass of the negative stiffness foamed geopolymer matrix magnifies the dissipation effect. In the limits of a still exploratory and comparative study, we aimed to verify the technological transfer potentiality of using architected metamaterials in sustainable building practices. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

17 pages, 7921 KiB  
Article
Hydraulic Expansion Joint Contact State of Heat Exchanger Based on New Contact Area Measurement Method
by Wenze Zhang, Jianwei Liu, Jianping Ma, Yulin He and Sunbing Wu
Materials 2023, 16(23), 7448; https://doi.org/10.3390/ma16237448 - 30 Nov 2023
Cited by 1 | Viewed by 1709
Abstract
The contact state of a seamless internal threaded copper tube and an aluminium foil fin not only affects the heat transfer efficiency of a tube–fin heat exchanger but also seriously affects its service life. In this study, hydraulic expansion technology was used to [...] Read more.
The contact state of a seamless internal threaded copper tube and an aluminium foil fin not only affects the heat transfer efficiency of a tube–fin heat exchanger but also seriously affects its service life. In this study, hydraulic expansion technology was used to connect the copper tube with an internal thread with a 7 mm diameter to the fin of the heat exchanger. The influence of the expansion pressure and pressure holding time on the contact state was analysed through experiments and finite element simulation, and the variation law of the two on the contact state was obtained. The contact state was characterised by the contact gap and contact area. In order to obtain the specific contact area value, a new method of measuring the contact area was developed to reveal the variation in contact area between the copper tube and the fin after expansion. The results show that the contact gap decreases with an increase in expansion pressure, while the pressure holding time remains the same. The contact area increases with an increase in expansion pressure, and the rate of increase slows. When the expansion pressure is 18 MPa, the average contact gap is approximately 0.018 mm. When the expansion pressure reaches 16 MPa, the contact area ratio is 91.0%. When the expansion pressure increases to 18 MPa, the contact area ratio only increases by approximately 0.6%. Compared with the influence of the expansion pressure on the increase in contact area, the influence of the pressure holding time on the contact area is lower. Full article
Show Figures

Figure 1

16 pages, 56236 KiB  
Article
Properties of Padding Welds Made of CuAl2 Multiwire and CuAl7 Wire in TIG Process
by Jarosław Kalabis, Aleksander Kowalski and Santina Topolska
Materials 2023, 16(18), 6199; https://doi.org/10.3390/ma16186199 - 13 Sep 2023
Viewed by 1949
Abstract
This paper presents the influence of the Hot Isostatic Pressing (HIP) process on the structure, mechanical properties and corrosion resistance of padding welds made using the TIG method from aluminium bronzes—CuAl7 and CuAl2 (a composite bundled wire). The tested CuAl7 material was a [...] Read more.
This paper presents the influence of the Hot Isostatic Pressing (HIP) process on the structure, mechanical properties and corrosion resistance of padding welds made using the TIG method from aluminium bronzes—CuAl7 and CuAl2 (a composite bundled wire). The tested CuAl7 material was a commercial welding wire, while the CuAl2 composite was an experimental one (a prototype of the material produced in multiwire technology). The wire contains a bundle of component materials—in this case, copper in the form of a tube and aluminium in the form of rods. The padding welds were manufactured for both the CuAl7 wire and the CuAl2 multiwire. The prepared samples were subjected to the Hot Isostatic Pressing (HIP) process, chemical composition tests were performed, and then the samples were subjected to observations using light microscopy, Vickers hardness testing, electrical conductivity tests, and apparent density determination using Archimedes’ Principle. Tribological tests (the ‘pin on disc’ method) and neutral salt spray corrosion tests were conducted. The padding weld made of CuAl2 multifiber material subjected to the HIP process is characterized by an improvement in density of 0.01 g/cm3; a homogenization of the hardness results across the sample was also observed. The average hardness of the sample after the HIP process decreased by about 15HV, however, the standard deviation also decreased by about 8HV. The electrical conductivity of the CuAl2 welded sample increased from 16.35 MS/m to 17.49 MS/m for the CuAl2 sample after the HIP process. As a result of this process, a visible increase in electrical conductivity was observed in the case of the wall made of the CuAl2 multiwire—an increase of 1.14 MS/m. Full article
Show Figures

Figure 1

13 pages, 2146 KiB  
Article
Compact Aluminium Foam Heat Exchangers
by Thomas Fiedler and Nima Movahedi
Metals 2023, 13(8), 1440; https://doi.org/10.3390/met13081440 - 11 Aug 2023
Cited by 8 | Viewed by 2692
Abstract
The aim of this study was to investigate the potential application of metal foams in shell-tube recuperators. A356 aluminium foam was cast around the internal and external surfaces of a thin-walled copper tube to enhance heat transfer between separated water streams at different [...] Read more.
The aim of this study was to investigate the potential application of metal foams in shell-tube recuperators. A356 aluminium foam was cast around the internal and external surfaces of a thin-walled copper tube to enhance heat transfer between separated water streams at different temperatures. The results demonstrated that the aluminium foam drastically increased heat transfer efficiency due to its large volumetric surface area and high thermal conductivity. In the shell-tube foam recuperators, a maximum heat transfer efficiency of 48.1% was observed, compared to only 12.2% for a single copper tube without metal foam. The pressure drop across the external foam increased with the flow rate, from an average value of 1.19 kPa at 1.0 L/min to 7.36 kPa at 3.0 L/min. These findings suggest that metal foams have great potential for use in shell-tube recuperators, which could significantly improve the efficiency of heat transfer in various industrial and engineering applications. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

21 pages, 9773 KiB  
Article
Computational Systems Design of Low-Cost Lightweight Robots
by Akhil Sathuluri, Anand Vazhapilli Sureshbabu, Jintin Frank, Maximilian Amm and Markus Zimmermann
Robotics 2023, 12(4), 91; https://doi.org/10.3390/robotics12040091 - 25 Jun 2023
Cited by 4 | Viewed by 3788
Abstract
With the increased demand for customisation, developing task-specific robots for industrial and personal applications has become essential. Collaborative robots are often preferred over conventional industrial robots in human-centred production environments. However, fixed architecture robots lack the ability to adapt to changing user demands, [...] Read more.
With the increased demand for customisation, developing task-specific robots for industrial and personal applications has become essential. Collaborative robots are often preferred over conventional industrial robots in human-centred production environments. However, fixed architecture robots lack the ability to adapt to changing user demands, while modular, reconfigurable robots provide a quick and affordable alternative. Standardised robot modules often derive their characteristics from conventional industrial robots, making them expensive and bulky and potentially limiting their wider adoption. To address this issue, the current work proposes a top-down multidisciplinary computational design strategy emphasising the low cost and lightweight attributes of modular robots within two consecutive optimisation problems. The first step employs an informed search strategy to explore the design space of robot modules to identify a low-cost robot architecture and controller. The second step employs dynamics-informed structural optimisation to reduce the robot’s net weight. The proposed methodology is demonstrated on a set of example requirements, illustrating that (1) the robot modules allow exploring non-intuitive robot architectures, (2) the structural mass of the resulting robot is 16 % lower compared to a robot designed using conventional aluminium tubes, and (3) the designed modules ensure the physical feasibility of the robots produced. Full article
(This article belongs to the Special Issue New Trends in Robotics and Mechatronic Technologies)
Show Figures

Figure 1

19 pages, 2060 KiB  
Article
Energy Dissipation Enhancement of Thin-Walled 6063 T5 Aluminium Tubes by Combining a Triggering Mechanism and Heat Treatment
by Jorge Jiménez-Armendáriz, Moises Jimenez-Martinez, Julio Varela-Soriano, Alfredo Santana Diaz and Rogelio Perez Santiago
Metals 2023, 13(5), 922; https://doi.org/10.3390/met13050922 - 9 May 2023
Cited by 11 | Viewed by 2098
Abstract
It is necessary to reduce the weight of components while maintaining or improving their mechanical properties to withstand dynamic loads in lightweight structures. In this study, heat treatment and a trigger mechanism were implemented for a thin-walled tube of aluminium to increase energy [...] Read more.
It is necessary to reduce the weight of components while maintaining or improving their mechanical properties to withstand dynamic loads in lightweight structures. In this study, heat treatment and a trigger mechanism were implemented for a thin-walled tube of aluminium to increase energy absorption while reducing the peak crushing force. Different geometries and locations were proposed to trigger deformation in a controlled manner, in combination with heat treatments. Experimental designs for each energy absorption mechanism were performed, and designs were tested by quasi-static crushing. Data obtained from experiments were used to calculate energy absorption indicators that were used to compared designs with components without mechanism to analyse performance. By comparing proposed designs with tubes without modification, the best combination of design variables for each trigger mechanism were identified. It was determined that 160 mm from the upper side, 250 mm2 area and a rectangular trigger shape reduced peak crushing force by 22.03% and increased energy absorption by 37.76%. For heat treatment, the optimal combination was heating in a furnace at 175 C for 1 h and cooling in water at 70 C during 10 min while only soaking half of its length. This combination reduced peak crushing force by 19.02% and increased energy absorption 15.08%. When these mechanisms were combined on a single tube, peak crushing force was reduced by 21.63%, and energy absorption increased by 42.53%. Full article
Show Figures

Figure 1

Back to TopTop