Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = altermagnet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 38696 KiB  
Review
Altermagnetism and Altermagnets: A Brief Review
by Rupam Tamang, Shivraj Gurung, Dibya Prakash Rai, Samy Brahimi and Samir Lounis
Magnetism 2025, 5(3), 17; https://doi.org/10.3390/magnetism5030017 - 23 Jul 2025
Viewed by 789
Abstract
Recently, a new class of magnetic material, termed altermagnets, has caught the attention of the magnetism and spintronics community. The magnetic phenomenon arising from these materials differs from traditional ferromagnetism and antiferromagnetism. It generally lacks net magnetization and is characterized by unusual non-relativistic [...] Read more.
Recently, a new class of magnetic material, termed altermagnets, has caught the attention of the magnetism and spintronics community. The magnetic phenomenon arising from these materials differs from traditional ferromagnetism and antiferromagnetism. It generally lacks net magnetization and is characterized by unusual non-relativistic spin-splitting and broken time-reversal symmetry. This leads to novel transport properties, such as the anomalous Hall effect, the crystal Nernst effect, and spin-dependent phenomena. Spin-dependent phenomena such as spin currents, spin-splitter torques, and high-frequency dynamics emerge as key characteristics in altermagnets. This paper reviews the main aspects pertaining to altermagnets by providing an overview of theoretical investigations and experimental realizations. We discuss the most recent developments in altermagnetism and prospects for exploiting its unique properties in next-generation devices. Full article
Show Figures

Figure 1

13 pages, 9148 KiB  
Article
Investigation of Thermoelectric Properties in Altermagnet RuO2
by Jun Liu, Chunmin Ning, Xiao Liu, Sicong Zhu and Shuling Wang
Nanomaterials 2025, 15(14), 1129; https://doi.org/10.3390/nano15141129 - 21 Jul 2025
Viewed by 262
Abstract
An altermagnet, characterized by its distinctive magnetic properties, may hold potential applications in diverse fields such as magnetic materials, spintronics, data storage, and quantum computing. As a prototypical altermagnet, RuO2 exhibits spin polarization and demonstrates the advantageous characteristics of high electrical conductivity [...] Read more.
An altermagnet, characterized by its distinctive magnetic properties, may hold potential applications in diverse fields such as magnetic materials, spintronics, data storage, and quantum computing. As a prototypical altermagnet, RuO2 exhibits spin polarization and demonstrates the advantageous characteristics of high electrical conductivity and low thermal conductivity. These exceptional properties endow it with considerable promise in the emerging field of thermal spintronics. We studied the electronic structure and thermoelectric properties of RuO2; the constructed RuO2/TiO2/RuO2 all-antiferromagnetic tunnel junction (AFMTJ) exhibited thermally induced magnetoresistance (TIMR), reaching a maximum TIMR of 1756% at a temperature gradient of 5 K. Compared with prior studies on RuO2-based antiferromagnetic tunnel junctions, the novelty of this work lies in the thermally induced magnetoresistance based on its superior thermoelectric properties. In parallel structures, the spin-down current dominates the transmission spectrum, whereas in antiparallel structures, the spin-up current governs the transmission spectrum, underscoring the spin-polarized thermal transport. In addition, thermoelectric efficiency emphasizes the potential of RuO2 to link antiferromagnetic robustness with ferromagnetic spin functionality. These findings promote the development of efficient spintronic devices and spin-based storage technology for waste heat recovery and emphasize the role of spin splitting in zero-magnetization systems. Full article
Show Figures

Figure 1

16 pages, 11512 KiB  
Article
Itinerant and Correlated Nature of Altermagnetic MnTe Single Crystal Studied by Photoemission and Inverse-Photoemission Spectroscopies
by Kazi Golam Martuza, Yogendra Kumar, Hiroshi Yamaguchi, Shiv Kumar, Masashi Arita, Hitoshi Sato, Shin-ichiro Ideta and Kenya Shimada
Materials 2025, 18(13), 3103; https://doi.org/10.3390/ma18133103 - 1 Jul 2025
Viewed by 375
Abstract
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the [...] Read more.
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the Γ¯ point, which was consistent with the reported ARPES results and our density functional theory (DFT) calculations with the on-site Coulomb interaction U. The observed Mn 3d↑-derived peak at −3.5 eV, however, significantly deviated from the DFT + U calculations. Meanwhile, the Mn 3d↓-derived peak at +3.0 eV observed by inverse-photoemission spectroscopy agreed well with the DFT + U results. Based on simulations of the spectral function employing an w-dependent model self-energy, we found significant relaxation effects in the electron-removal process, while such effects were negligible in the electron-addition process. Our study provides a comprehensive picture of electronic states, forming a solid foundation for understanding the magnetic and transport properties of MnTe. Full article
(This article belongs to the Special Issue Advanced Materials with Strong Electron Correlations)
Show Figures

Figure 1

13 pages, 3353 KiB  
Article
Electronic Correlations in Altermagnet MnTe in Hexagonal Crystal Structure
by Evgenii D. Chernov and Alexey V. Lukoyanov
Materials 2025, 18(11), 2637; https://doi.org/10.3390/ma18112637 - 4 Jun 2025
Viewed by 753
Abstract
In this article, we present the results of the first-principles study of altermagnet MnTe crystallized in the hexagonal-type crystal structure. Our theoretical calculations have been performed within density functional theory (DFT) and demonstrated that the altermagnetic phase of MnTe has the lowest total [...] Read more.
In this article, we present the results of the first-principles study of altermagnet MnTe crystallized in the hexagonal-type crystal structure. Our theoretical calculations have been performed within density functional theory (DFT) and demonstrated that the altermagnetic phase of MnTe has the lowest total energy corresponding to the stable ground state. The calculations carried out accounting for electronic correlations in DFT+U resulted in significant changes in the electronic structure, as well as magnetic properties of altermagnet MnTe and the increased bandgap. In additional calculations with spin-orbit coupling and electronic correlations (DFT+U+SO), we showed that the bandgap is less than in the DFT+U calculations, but the electronic structure did not change noticeably. In addition, the investigated pressure effects for the compound under study revealed an insulator to metal transition under pressure for the hexagonal-type crystal structure. An experimental finding of a metallic state can be complicated by structural transitions into other phases, not considered in our study, which can occur at high pressures. Experimental measurements for MnTe above 40 GPa are required. Full article
Show Figures

Figure 1

14 pages, 4706 KiB  
Article
Valley-Related Multipiezo Effect in Altermagnet Monolayer V2STeO
by Yufang Chang, Yanzhao Wu, Li Deng, Xiang Yin and Xianmin Zhang
Materials 2025, 18(3), 527; https://doi.org/10.3390/ma18030527 - 24 Jan 2025
Cited by 1 | Viewed by 1061
Abstract
The multipiezo effect realizes the coupling of strain with magnetism and electricity, which provides a new way of designing multifunctional devices. In this study, monolayer V2STeO is demonstrated to be an altermagnet semiconductor with a direct band gap of 0.41 eV. [...] Read more.
The multipiezo effect realizes the coupling of strain with magnetism and electricity, which provides a new way of designing multifunctional devices. In this study, monolayer V2STeO is demonstrated to be an altermagnet semiconductor with a direct band gap of 0.41 eV. The spin splittings of monolayer V2STeO are as high as 1114 and 1257 meV at the valence and conduction bands, respectively. Moreover, a pair of energy degeneracy valleys appears at X and Y points in the first Brillouin zone. The valley polarization and reversion can be achieved by applying uniaxial strains along different directions, indicating a piezovalley effect. In addition, a net magnetization coupled with uniaxial strain and hole doping can be induced in monolayer V2STeO, presenting the piezomagnetic feature. Furthermore, due to the Janus structure, the inversion symmetry of monolayer V2STeO is naturally broken, resulting in the piezoelectric property. The integration of the altermagnet, piezovalley, piezomagnetic, and piezoelectric properties make monolayer V2STeO a promising candidate for multifunctional spintronic and valleytronic devices. Full article
Show Figures

Figure 1

10 pages, 1275 KiB  
Article
Ab Initio Study of the β-Fe2O3 Phase
by Priyanka Mishra and Carmine Autieri
Molecules 2024, 29(23), 5751; https://doi.org/10.3390/molecules29235751 - 5 Dec 2024
Viewed by 1179
Abstract
We present first-principles results on the electronic and magnetic properties of the cubic bulk β-phase of Fe2O3. Given that all Fe–Fe magnetic couplings are expected to be antiferromagnetic within this high-symmetry crystal structure, the system may exhibit some [...] Read more.
We present first-principles results on the electronic and magnetic properties of the cubic bulk β-phase of Fe2O3. Given that all Fe–Fe magnetic couplings are expected to be antiferromagnetic within this high-symmetry crystal structure, the system may exhibit some signature of magnetic frustration, making it challenging to identify its magnetic ground state. We have analyzed the possible magnetic phases of the β-phase, among which there are ferrimagnets, altermagnets, and Kramers antiferromagnets. While the α-phase is an altermagnet and the γ-phase is a ferrimagnet, we conclude that the magnetic ground state for the bulk β-phase of Fe2O3 is a Kramers antiferromagnet. Moreover, we find that close in energy, there is a bulk d-wave altermagnetic phase. We report the density of states and the evolution band gap as a function of the electronic correlations. For suitable values of the Coulomb repulsion, the system is a charge-transfer insulator with an indirect band gap of 1.5 eV. More in detail, the unit cell of the β-phase is composed of 8Fea atoms and 24Feb atoms. The 8Fea atoms lie on the corner of a cube, and their magnetic ground state is a G-type. This structural phase is composed of zig-zag chains FeaFebFeaFeb with spin configuration ↑-↑-↓-↓ along the 3 directions such that for every Fea atoms there are 3Feb atoms. As the opposite to the γ-phase, the magnetic configuration between the first neighbor of the same kind is always antiferromagnetic while the magnetic configuration between Fea and Feb is ferro or antiferro. In this magnetic arrangement, first-neighbor interactions cancel out in the mean-field estimation of the Néel temperature, leaving second-neighbor magnetic exchanges as the primary contributors, resulting in a Néel temperature lower than that of other phases. Our work paves the way toward the ab initio study of nanoparticles and alloys for the β-phase of Fe2O3. Full article
Show Figures

Figure 1

Back to TopTop