Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = all-trans astaxanthin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4230 KiB  
Article
Simultaneous Inhibitory Effects of All-Trans Astaxanthin on Acetylcholinesterase and Oxidative Stress
by Xin Wang, Tao Zhang, Xiaochen Chen, Yating Xu, Zhipeng Li, Yuanfan Yang, Xiping Du, Zedong Jiang and Hui Ni
Mar. Drugs 2022, 20(4), 247; https://doi.org/10.3390/md20040247 - 31 Mar 2022
Cited by 11 | Viewed by 2982
Abstract
Alzheimer´s disease is a global neurodegenerative health concern. To prevent the disease, the simultaneous inhibition of acetylcholinesterase and oxidative stress is an efficient approach. In this study, the inhibition effect of all-trans astaxanthin mainly from marine organisms on acetylcholinesterase and oxidative stress was [...] Read more.
Alzheimer´s disease is a global neurodegenerative health concern. To prevent the disease, the simultaneous inhibition of acetylcholinesterase and oxidative stress is an efficient approach. In this study, the inhibition effect of all-trans astaxanthin mainly from marine organisms on acetylcholinesterase and oxidative stress was evaluated by a chemical-based method in vitro and cell assay model. The results show that all-trans astaxanthin was a reversible competitive inhibitor and exhibited a strong inhibition effect with half inhibitory concentration (IC50 value) of 8.64 μmol/L. Furthermore, all-trans astaxanthin inhibited oxidative stress through reducing malondialdehyde content and increasing the activity of superoxide dismutase as well as catalase. All-trans astaxanthin could induce the changes of the secondary structure to reduce acetylcholinesterase activity. Molecular-docking analysis reveals that all-trans astaxanthin prevented substrate from binding to acetylcholinesterase by occupying the space of the active pocket to cause the inhibition. Our finding suggests that all-trans astaxanthin might be a nutraceutical supplement for Alzheimer´s disease prevention. Full article
Show Figures

Graphical abstract

15 pages, 6130 KiB  
Article
Adonis amurensis Is a Promising Alternative to Haematococcus as a Resource for Natural Esterified (3S,3′S)-Astaxanthin Production
by Yongfu Li, Fengying Gong, Shuju Guo, Wenjie Yu and Jianguo Liu
Plants 2021, 10(6), 1059; https://doi.org/10.3390/plants10061059 - 25 May 2021
Cited by 16 | Viewed by 4337
Abstract
Astaxanthin (AST) characteristics and pigment productivity of Adonis amurensis, one of the few AST-producing higher plants, have not yet been studied extensively. In this study, the geometrical and optical isomers of AST in different parts of the A. amurensis flower were determined [...] Read more.
Astaxanthin (AST) characteristics and pigment productivity of Adonis amurensis, one of the few AST-producing higher plants, have not yet been studied extensively. In this study, the geometrical and optical isomers of AST in different parts of the A. amurensis flower were determined in detail, followed by a separation of the all-trans AST using HPLC chromatography. AST extracted from the flower accounted for 1.31% of the dry weight (dw) and mainly existed in the di-esterified form (>86.5%). The highest concentration was found in the upper red part of the petal (3.31% dw). One optical isomer (3S, 3′S) of AST, with five geometrical isomers (all-trans, 9-cis, 13-cis, 15-cis, and di-cis) were observed in all parts of the flower. All-trans AST was the predominant geometrical isomer accounting for 72.5% of the total content of geometric isomers in total flower, followed by the 13-cis, and 9-cis isomers. The all-trans AST isomer was also isolated, and then purified by HPLC from the crude oily flower extract, with a 21.5% recovery yield. The cis-AST extracted from the combined androecium and gynoecium gives a very strong absorption in the UVA region due to a high level of cis, especially di-cis, isomers, suggesting a prospective use in the preparation of anti-ultraviolet agents. The production cost of AST from Adonis flowers can be as low as €388–393/kg. These observations together with other factors such as the low technology requirement for plant culturing and harvesting suggest Adonis has great potential as a resource for natural esterified (3S,3′S)-AST production when compared with Haematococcus culturing. Full article
Show Figures

Graphical abstract

17 pages, 3876 KiB  
Article
Smart Method for Carotenoids Characterization in Haematococcus pluvialis Red Phase and Evaluation of Astaxanthin Thermal Stability
by Patrizia Casella, Angela Iovine, Sanjeet Mehariya, Tiziana Marino, Dino Musmarra and Antonio Molino
Antioxidants 2020, 9(5), 422; https://doi.org/10.3390/antiox9050422 - 13 May 2020
Cited by 45 | Viewed by 8548
Abstract
Haematococcus pluvialis microalgae is a promising source of astaxanthin, an excellent antioxidant carotenoid. H. pluvialis, as well as other species, could find more extensive applications as healthy food for a variegated carotenoids composition in addition to astaxanthin. Official method has not currently [...] Read more.
Haematococcus pluvialis microalgae is a promising source of astaxanthin, an excellent antioxidant carotenoid. H. pluvialis, as well as other species, could find more extensive applications as healthy food for a variegated carotenoids composition in addition to astaxanthin. Official method has not currently been used for this purpose. The objective of this work was to propose a method to characterize carotenoids in H. pluvialis after the comparison between spectrophotometric and liquid chromatography analysis. In addition, in order to improve the use of astaxanthin in the food industry, thermal stability was investigated. In this context, the effect of temperature at 40–80 °C, over a 16 h storage period was tested on astaxanthin produced by H. pluvialis. A further test was carried out at room temperature (20 °C) for seven days. A decrease in the astaxanthin concentration was observed at all tested temperatures with a decrease >50% of all-trans isomer at 80 °C after 16 h and an increase of 9-cis and 13-cis isomers. In conclusion, the obtained results showed the importance of evaluating the degradation effect of temperature on astaxanthin used as a food additive for a future greater enhancement of this bioproduct in the food field. Full article
Show Figures

Figure 1

14 pages, 750 KiB  
Article
Carotenoids from Foods of Plant, Animal and Marine Origin: An Efficient HPLC-DAD Separation Method
by Irini F. Strati, Vassilia J. Sinanoglou, Lintita Kora, Sofia Miniadis-Meimaroglou and Vassiliki Oreopoulou
Foods 2012, 1(1), 52-65; https://doi.org/10.3390/foods1010052 - 19 Dec 2012
Cited by 37 | Viewed by 12129
Abstract
Carotenoids are important antioxidant compounds, present in many foods of plant, animal and marine origin. The aim of the present study was to describe the carotenoid composition of tomato waste, prawn muscle and cephalothorax and avian (duck and goose) egg yolks through the [...] Read more.
Carotenoids are important antioxidant compounds, present in many foods of plant, animal and marine origin. The aim of the present study was to describe the carotenoid composition of tomato waste, prawn muscle and cephalothorax and avian (duck and goose) egg yolks through the use of a modified gradient elution HPLC method with a C30 reversed-phase column for the efficient separation and analysis of carotenoids and their cis-isomers. Elution time was reduced from 60 to 45 min without affecting the separation efficiency. All-trans lycopene predominated in tomato waste, followed by all-trans-β-carotene, 13-cis-lutein and all-trans lutein, while minor amounts of 9-cis-lutein, 13-cis-β-carotene and 9-cis-β-carotene were also detected. Considering the above findings, tomato waste is confirmed to be an excellent source of recovering carotenoids, especially all-trans lycopene, for commercial use. Xanthophylls were the major carotenoids of avian egg yolks, all-trans lutein and all-trans zeaxanthin in duck and goose egg yolk, respectively. In the Penaeus kerathurus prawn, several carotenoids (zeaxanthin, all-trans-lutein, canthaxanthin, cryptoxanthin, optical and geometrical astaxanthin isomers) were identified in considerable amounts by the same method. A major advantage of this HPLC method was the efficient separation of carotenoids and their cis-isomers, originating from a wide range of matrices. Full article
Show Figures

Figure 1

Back to TopTop