Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = acute gamma irradiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8673 KiB  
Article
Potential of Lactoferrin Against the Radiation-Induced Brain Injury
by Marina Yu. Kopaeva, Anton B. Cherepov, Irina B. Alchinova, Daria A. Shaposhnikova, Anna V. Rybakova and Alexandr P. Trashkov
Cells 2025, 14(15), 1198; https://doi.org/10.3390/cells14151198 - 4 Aug 2025
Viewed by 201
Abstract
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per [...] Read more.
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per mouse, i.p. injection) immediately after whole-body gamma-irradiation at a dose of 7.5 Gy from a 60Co source. The effect of Lf on mouse behavior was evaluated using “Open field” and “Elevated plus-maze” tests. The proportion of cells with DNA replication was determined by 5-ethynyl-2′-deoxyuridine incorporation (thymidine analog) and detected by a click reaction with azide Alexa Fluor 568. Lf treatment increased animal survival during the experiment (30 days), compensated for radiation-induced body weight loss, and prevented suppression of motor and exploratory activities. A pronounced anti-radiation effect of Lf on mouse brain cells has been demonstrated. A single injection of the protein allowed preserving 2-fold more proliferating cells and immature neurons in the dentate gyrus of the hippocampus of irradiated animals during the acute period of post-radiation injury development. Full article
Show Figures

Figure 1

17 pages, 3638 KiB  
Article
New Cellular Interactions Due to the Radioprotective Effect of N-Acetylcysteine in a Model of Radiation-Induced Pancreatitis
by Grigory Demyashkin, Matvey Vadyukhin, Vladimir Shchekin, Tatyana Borovaya, Olga Zavialova, Dmitriy Belokopytov, Kirill Silakov, Petr Shegay and Andrei Kaprin
Int. J. Mol. Sci. 2025, 26(11), 5238; https://doi.org/10.3390/ijms26115238 - 29 May 2025
Viewed by 441
Abstract
Ionizing radiation at early stages leads to radiation-induced death of Langerhans islet cells and acinar cells, resulting in the development of acute/subacute pancreatitis. Conducting studies on radiation-induced changes in the pancreas following electron beam irradiation appears to be of great interest, and the [...] Read more.
Ionizing radiation at early stages leads to radiation-induced death of Langerhans islet cells and acinar cells, resulting in the development of acute/subacute pancreatitis. Conducting studies on radiation-induced changes in the pancreas following electron beam irradiation appears to be of great interest, and the evaluation of radioprotective agents for safeguarding normal tissues from radiation is equally important. The aim of this study was to preclinically investigate the antioxidant properties of N-Acetylcysteine in an animal model of radiation-induced pancreatitis over a three-month period. In this study, it was proven for the first time that even electrons can lead to characteristic signs of radiation-induced pancreatitis, the degree of which was assessed based on the levels of insulin, glucose, and amylase. Thus, conducting electron therapy also increases the risks of insulin resistance, as well as X-ray and gamma radiation. For the first time, a comprehensive analysis of biochemical, morphological, and immunohistochemical markers in the pancreas of a large cohort of electron-irradiated animals was conducted, including both acute and delayed effects of electron exposure. The crucial role of interleukins in shaping both the cellular and vascular components of the inflammatory response was identified. Additionally, the radioprotective properties of N-Acetylcysteine during electron irradiation of the pancreas were evaluated for the first time, and its effectiveness in reducing both acute and late complications of electron therapy was demonstrated. Thus, it can be concluded that N-Acetylcysteine is capable of effectively suppressing the inflammatory response in the pancreas. Full article
Show Figures

Figure 1

18 pages, 12466 KiB  
Article
X-ray Fluorescence Microscopy to Develop Elemental Classifiers and Investigate Elemental Signatures in BALB/c Mouse Intestine a Week after Exposure to 8 Gy of Gamma Rays
by Anthony Smith, Katrina Dobinda, Si Chen, Peter Zieba, Tatjana Paunesku, Zequn Sun and Gayle E. Woloschak
Int. J. Mol. Sci. 2024, 25(19), 10256; https://doi.org/10.3390/ijms251910256 - 24 Sep 2024
Cited by 1 | Viewed by 1092
Abstract
Iron redistribution in the intestine after total body irradiation is an established phenomenon. However, in the literature, there are no reports about the use of X-ray fluorescence microscopy or equivalent techniques to generate semi-quantitative 2D maps of iron in sectioned intestine samples from [...] Read more.
Iron redistribution in the intestine after total body irradiation is an established phenomenon. However, in the literature, there are no reports about the use of X-ray fluorescence microscopy or equivalent techniques to generate semi-quantitative 2D maps of iron in sectioned intestine samples from irradiated mice. In this work, we used X-ray fluorescence microscopy (XFM) to map the elemental content of iron as well as phosphorus, sulfur, calcium, copper and zinc in tissue sections of the small intestine from eight-week-old BALB/c male mice that developed gastrointestinal acute radiation syndrome (GI-ARS) in response to exposure to 8 Gray of gamma rays. Seven days after irradiation, we found that the majority of the iron is localized as hot spots in the intercellular regions of the area surrounding crypts and stretching between the outer perimeter of the intestine and the surface cell layer of villi. In addition, this study represents our current efforts to develop elemental cell classifiers that could be used for the automated generation of regions of interest for analyses of X-ray fluorescence maps. Once developed, such a tool will be instrumental for studies of effects of radiation and other toxicants on the elemental content in cells and tissues. While XFM studies cannot be conducted on living organisms, it is possible to envision future scenarios where XFM imaging of single cells sloughed from the human (or rodent) intestine could be used to follow up on the progression of GI-ARS. Full article
(This article belongs to the Special Issue Molecular Research of Biomedical X-ray Fluorescence Imaging (XFI))
Show Figures

Figure 1

26 pages, 3485 KiB  
Article
Long-Term, Sex-Specific Effects of GCRsim and Gamma Irradiation on the Brains, Hearts, and Kidneys of Mice with Alzheimer’s Disease Mutations
by Curran Varma, Maren K. Schroeder, Brittani R. Price, Khyrul A. Khan, Ernesto Curty da Costa, Camila Hochman-Mendez, Barbara J. Caldarone and Cynthia A. Lemere
Int. J. Mol. Sci. 2024, 25(16), 8948; https://doi.org/10.3390/ijms25168948 - 16 Aug 2024
Cited by 1 | Viewed by 1774
Abstract
Understanding the hazards of space radiation is imperative as astronauts begin voyaging on missions with increasing distances from Earth’s protective shield. Previous studies investigating the acute or long-term effects of specific ions comprising space radiation have revealed threats to organs generally considered radioresistant, [...] Read more.
Understanding the hazards of space radiation is imperative as astronauts begin voyaging on missions with increasing distances from Earth’s protective shield. Previous studies investigating the acute or long-term effects of specific ions comprising space radiation have revealed threats to organs generally considered radioresistant, like the brain, and have shown males to be more vulnerable than their female counterparts. However, astronauts will be exposed to a combination of ions that may result in additive effects differing from those of any one particle species. To better understand this nuance, we irradiated 4-month-old male and female, wild-type and Alzheimer’s-like mice with 0, 0.5, or 0.75 Gy galactic cosmic ray simulation (GCRsim) or 0, 0.75, or 2 Gy gamma radiation (wild-type only). At 11 months, mice underwent brain and heart MRIs or behavioral tests, after which they were euthanized to assess amyloid-beta pathology, heart and kidney gene expression and fibrosis, and plasma cytokines. Although there were no changes in amyloid-beta pathology, we observed many differences in brain MRIs and behavior, including opposite effects of GCRsim on motor coordination in male and female transgenic mice. Additionally, several genes demonstrated persistent changes in the heart and kidney. Overall, we found sex- and genotype-specific, long-term effects of GCRsim and gamma radiation on the brain, heart, and kidney. Full article
(This article belongs to the Special Issue Advanced Science in Alzheimer’s Disease)
Show Figures

Figure 1

12 pages, 1355 KiB  
Review
Management of Casualties from Radiation Events
by Robert Alan Dent
Eur. Burn J. 2023, 4(4), 584-595; https://doi.org/10.3390/ebj4040039 - 14 Nov 2023
Cited by 4 | Viewed by 2562
Abstract
Radiation events such as nuclear war, nuclear reactor incidents, and the deployment of a radioactive dispersal device (dirty bomb) are all significant threats in today’s world. Each of these events would bring significant challenges to clinicians caring for patients with burns and traumatic [...] Read more.
Radiation events such as nuclear war, nuclear reactor incidents, and the deployment of a radioactive dispersal device (dirty bomb) are all significant threats in today’s world. Each of these events would bring significant challenges to clinicians caring for patients with burns and traumatic injuries who are also contaminated or irradiated. The result of a nuclear exchange in a densely populated area could result in thousands of patients presenting with trauma, burns, and combined injury (trauma and burn in an irradiated patient). In this review, we will discuss the three major types of ionizing radiation: alpha, beta, and gamma, and their respective health hazards and biological effects. Additionally, we will discuss the types of burn injuries in a nuclear disaster, caring for the contaminated patient, and managing the combined injury of burn trauma with acute radiation syndrome. The reader will also be left with an understanding of how to prioritize lifesaving interventions, estimate the absorbed dose of radiation, and predict the onset of acute radiation syndrome. While some animal models for morbidity and mortality exist, there is limited modern day human data for patients with combined injury and burns associated with a nuclear disaster due to the infrequent nature of these events. It is extremely important to continue multidisciplinary research on the prevention of, preparedness for, and the response to nuclear events. Furthermore, continued exploration of novel treatments for radiation induced burns and the management of combined injury is necessary. Full article
(This article belongs to the Special Issue Burn Injuries Associated with Wars and Disasters)
Show Figures

Figure 1

11 pages, 617 KiB  
Article
Dose Volume and Liver Function Test Relationship following Radiotheraphy for Right Breast Cancer: A Multicenter Study
by Zeliha Güzelöz, Oğuzhan Ayrancıoğlu, Nesrin Aktürk, Merve Güneş and Zümre Arıcan Alıcıkuş
Curr. Oncol. 2023, 30(10), 8763-8773; https://doi.org/10.3390/curroncol30100632 - 26 Sep 2023
Cited by 4 | Viewed by 3500
Abstract
Objective: The liver is a critical organ at risk during right breast radiotherapy (RT). Liver function tests (LFTs) such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT) serve as biochemical markers for hepatobiliary damage. In this multicenter cross-sectional study, the [...] Read more.
Objective: The liver is a critical organ at risk during right breast radiotherapy (RT). Liver function tests (LFTs) such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT) serve as biochemical markers for hepatobiliary damage. In this multicenter cross-sectional study, the effects of liver dose–volume on changes in LFTs pre- and post-RT in patients treated for right breast cancer were evaluated. Materials and Methods: Between January 2019 and November 2022, data from 100 patients who underwent adjuvant right breast RT across three centers were retrospectively assessed. Target volumes and normal structures were contoured per the RTOG atlas. Patients were treated with a total dose of 50 Gy in 25 fractions to the CTV, followed by a boost to the tumor bed where indicated. The percentage change in LFT values in the first two weeks post-RT was calculated. Statistics were analyzed with SPSS version 22 software, with significance set at p < 0.05. Statistical correlation between liver doses (in cGy) and the volume receiving specific doses (Vx in cc) on the change in LFTs were analyzed using Kolmogorov–Smirnov, Mann–Whitney U test. Results: The median age among the 100 patients was 56 (range: 29–79). Breast-conserving surgery was performed on 75% of the patients. The most common T and N stages were T1 (53%) and N0 (53%), respectively. None of the patients had distant metastasis or simultaneous systemic treatment with RT. A total of 67% of the treatments utilized the IMRT technique and 33% VMAT. The median CTV volume was 802 cc (range: 214–2724 cc). A median boost dose of 10 Gy (range: 10–16 Gy) was applied to 28% of the patients with electrons and 51% with IMRT/VMAT. The median liver volume was 1423 cc (range: 825–2312 cc). Statistical analyses were conducted on a subset of 57 patients for whom all three LFT values were available both pre- and post-RT. In this group, the median values for AST, ALT, and GGT increased up to 15% post-RT compared to pre-RT, and a median liver Dmean below 208 cGy was found significant. While many factors can influence LFT values, during RT planning, attention to liver doses and subsequent regular LFT checks are crucial. Conclusion: Due to factors such as anatomical positioning, planning technique, and breast posture, the liver can receive varying doses during right breast irradiation. Protecting patients from liver toxicity secondary to RT is valuable, especially in breast cancer patients with a long-life expectancy. Our study found that, even in the absence of any systemic treatment or risk factors, there was an average increase of nearly 15% in enzymes, indicating acute liver damage post-RT compared with pre-RT. Attention to liver doses during RT planning and regular follow-up with LFTs is essential. Full article
(This article belongs to the Special Issue Breast Cancer: A Multi-Disciplinary Approach from Imaging to Therapy)
Show Figures

Figure 1

27 pages, 10235 KiB  
Review
Persistence of Coronavirus on Surface Materials and Its Control Measures Using Nonthermal Plasma and Other Agents
by Sekar Ashokkumar, Nagendra Kumar Kaushik, Ihn Han, Han Sup Uhm, Jang Sick Park, Gyu Seong Cho, Young-Jei Oh, Yung Oh Shin and Eun Ha Choi
Int. J. Mol. Sci. 2023, 24(18), 14106; https://doi.org/10.3390/ijms241814106 - 14 Sep 2023
Cited by 11 | Viewed by 2541
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. [...] Read more.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods. Full article
(This article belongs to the Special Issue Bio-Plasma for Molecular Science)
Show Figures

Figure 1

18 pages, 5400 KiB  
Article
Radioprotective Effects of Carvacrol and/or Thymol against Gamma Irradiation-Induced Acute Nephropathy: In Silico and In Vivo Evidence of the Involvement of Insulin-like Growth Factor-1 (IGF-1) and Calcitonin Gene-Related Peptide
by Yasmen F. Mahran, Layla A. Al-Kharashi, Reem T. Atawia, Rawan Turki Alanazi, Amal M. Bin Dhahi, Rawd Alsubaie and Amira M. Badr
Biomedicines 2023, 11(9), 2521; https://doi.org/10.3390/biomedicines11092521 - 13 Sep 2023
Cited by 8 | Viewed by 1872
Abstract
Radiotherapy (RT) is an effective curative cancer treatment. However, RT can seriously damage kidney tissues resulting in radiotherapy nephropathy (RN) where oxidative stress, inflammation, and apoptosis are among the common pathomechanisms. Carvacrol and thymol are known for their antioxidative, anti-inflammatory, and radioprotective activities. [...] Read more.
Radiotherapy (RT) is an effective curative cancer treatment. However, RT can seriously damage kidney tissues resulting in radiotherapy nephropathy (RN) where oxidative stress, inflammation, and apoptosis are among the common pathomechanisms. Carvacrol and thymol are known for their antioxidative, anti-inflammatory, and radioprotective activities. Therefore, this study investigated the nephroprotective potentials of carvacrol and/or thymol against gamma (γ) irradiation-induced nephrotoxicity in rats along with the nephroprotection mechanisms, particularly the involvement of insulin-like growth factor-1 (IGF-1) and calcitonin gene-related peptide (CGRP). Methods: Male rats were injected with carvacrol and/or thymol (80 and 50 mg/kg BW in the vehicle, respectively) for five days and exposed to a single dose of irradiation (6 Gy). Then, nephrotoxicity indices, oxidative stress, inflammatory, apoptotic biomarkers, and the histopathological examination were assessed. Also, IGF-1 and CGRP renal expressions were measured. Results: Carvacrol and/or thymol protected kidneys against γ-irradiation-induced acute RN which might be attributed to their antioxidative, anti-inflammatory, and antiapoptotic activities. Moreover, both reserved the γ -irradiation-induced downregulation of CGRP- TNF-α loop in acute RN that might be involved in the pathomechanisms of acute RN. Additionally, in Silico molecular docking simulation of carvacrol and thymol demonstrated promising fitting and binding with CGRP, IGF-1, TNF-α and NF-κB through the formation of hydrogen, hydrophobic and alkyl bonds with binding sites of target proteins which supports the reno-protective properties of carvacrol and thymol. Collectively, our findings open a new avenue for using carvacrol and/or thymol to improve the therapeutic index of γ-irradiation. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

20 pages, 2747 KiB  
Article
The Impact of Acute Low-Dose Gamma Irradiation on Biomass Accumulation and Secondary Metabolites Production in Cotinus coggygria Scop. and Fragaria × ananassa Duch. Red Callus Cultures
by Alexandra-Gabriela Ciocan, Carmen Maximilian, Elena Monica Mitoi, Radu-Cristian Moldovan, Daniel Neguț, Cristina-Adela Iuga, Florența Elena Helepciuc, Irina Holobiuc, Mihai Radu, Tatiana Vassu Dimov and Gina Cogălniceanu
Metabolites 2023, 13(8), 894; https://doi.org/10.3390/metabo13080894 - 28 Jul 2023
Cited by 4 | Viewed by 2427
Abstract
Cotinus coggygria Scop. (smoketree) and Fragaria × ananassa Duch. (strawberry) are two industrially important species due to their composition in bioactive compounds. In this study, we investigated the effects of acute low-dose gamma irradiation (15, 20, 25, 30, 35 and 40 Gy) on [...] Read more.
Cotinus coggygria Scop. (smoketree) and Fragaria × ananassa Duch. (strawberry) are two industrially important species due to their composition in bioactive compounds. In this study, we investigated the effects of acute low-dose gamma irradiation (15, 20, 25, 30, 35 and 40 Gy) on two red callus cultures established in smoketree and strawberry. The biomass production, dry weight, content of phenols, flavonoids, monomeric anthocyanins’, index of anthocyanins polymerization and antioxidant activity were evaluated. For the smoketree callus, a negative correlation between irradiation doses and callus biomass accumulation was observed. For the strawberry callus, irradiation did not significantly affect the accumulation of the biomass. An increased dry weight was observed in irradiated smoketree callus, while for treated strawberry callus, a decrease was recorded. Irradiation with 30 Gy was stimulative for polyphenols’ accumulation in both cultures; however, the increase was significant only in the strawberry callus. The flavonoids increased in the 30 Gy strawberry variants, while it significantly decreased in smoketree callus irradiated with 35 and 40 Gy. In irradiated strawberry callus, except for the 25 Gy variant (1.65 ± 0.4 mg C-3-GE/g DW), all treatments caused an increase in anthocyanins’ accumulation. In smoketree, except for the 15 Gy variant (2.14 ± 0.66 mg C-3-GE/g DW), the irradiation determined an increase in anthocyanins synthesis, with the highest value being seen in the 20 Gy variant (2.8 ± 0.94 mg C-3-GE/g DW). According to UPLC-HRMS investigations, an unidentified compound increased by 99% at the 30 Gy dose in strawberry callus, while in smoketree, maslinic acid increased by 51% after irradiation with 40 Gy. The results of this study showed, for the first time, the differential response of two performant callus cultures to low-dose gamma irradiation, a biotechnological method that can be used to stimulate the synthesis of important flavonoids and triterpenes. Full article
(This article belongs to the Special Issue Effects of Biotic/Abiotic Stress on Plant Metabolism)
Show Figures

Figure 1

24 pages, 2715 KiB  
Article
Lifetime Evaluation of Left Ventricular Structure and Function in Male C57BL/6J Mice after Gamma and Space-Type Radiation Exposure
by Agnieszka Brojakowska, Cedric J. Jackson, Malik Bisserier, Mary K. Khlgatian, Cynthia Grano, Steve R. Blattnig, Shihong Zhang, Kenneth M. Fish, Vadim Chepurko, Elena Chepurko, Virginia Gillespie, Ying Dai, Brooke Lee, Venkata Naga Srikanth Garikipati, Lahouaria Hadri, Raj Kishore and David A. Goukassian
Int. J. Mol. Sci. 2023, 24(6), 5451; https://doi.org/10.3390/ijms24065451 - 13 Mar 2023
Cited by 10 | Viewed by 27149
Abstract
The lifetime effects of space irradiation (IR) on left ventricular (LV) function are unknown. The cardiac effects induced by space-type IR, specifically 5-ion simplified galactic cosmic ray simulation (simGCRsim), are yet to be discovered. Three-month-old, age-matched, male C57BL/6J mice were irradiated with 137 [...] Read more.
The lifetime effects of space irradiation (IR) on left ventricular (LV) function are unknown. The cardiac effects induced by space-type IR, specifically 5-ion simplified galactic cosmic ray simulation (simGCRsim), are yet to be discovered. Three-month-old, age-matched, male C57BL/6J mice were irradiated with 137Cs gamma (γ; 100, 200 cGy) and simGCRsim (50 and 100 cGy). LV function was assessed via transthoracic echocardiography at 14 and 28 days (early), and at 365, 440, and 660 (late) days post IR. We measured the endothelial function marker brain natriuretic peptide in plasma at three late timepoints. We assessed the mRNA expression of the genes involved in cardiac remodeling, fibrosis, inflammation, and calcium handling in LVs harvested at 660 days post IR. All IR groups had impaired global LV systolic function at 14, 28, and 365 days. At 660 days, 50 cGy simGCRsim-IR mice exhibited preserved LV systolic function with altered LV size and mass. At this timepoint, the simGCRsim-IR mice had elevated levels of cardiac fibrosis, inflammation, and hypertrophy markers Tgfβ1, Mcp1, Mmp9, and βmhc, suggesting that space-type IR may induce the cardiac remodeling processes that are commonly associated with diastolic dysfunction. IR groups showing statistical significance were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). The observed dose-response shape did not indicate a lower threshold at these IR doses. A single full-body IR at doses of 100–200 cGy for γ-IR, and 50–100 cGy for simGCRsim-IR decreases the global LV systolic function in WT mice as early as 14 and 28 days after exposure, and at 660 days post IR. Interestingly, there is an intermediate time point (365 days) where the impairment in LV function is observed. These findings do not exclude the possibility of increased acute or degenerative cardiovascular disease risks at lower doses of space-type IR, and/or when combined with other space travel-associated stressors such as microgravity. Full article
(This article belongs to the Special Issue New Insights into Cardiovascular Diseases in Basic Research)
Show Figures

Figure 1

20 pages, 4801 KiB  
Article
Dual Effects of miR-181b-2-3p/SOX21 Interaction on Microglia and Neural Stem Cells after Gamma Irradiation
by Hong Wang, Zhao-Wu Ma, Feng-Ming Ho, Gautam Sethi and Feng Ru Tang
Cells 2023, 12(4), 649; https://doi.org/10.3390/cells12040649 - 17 Feb 2023
Cited by 6 | Viewed by 2287
Abstract
Ionizing radiation induces brain inflammation and the impairment of neurogenesis by activating microglia and inducing apoptosis in neurogenic zones. However, the causal relationship between microglial activation and the impairment of neurogenesis as well as the relevant molecular mechanisms involved in microRNA (miR) remain [...] Read more.
Ionizing radiation induces brain inflammation and the impairment of neurogenesis by activating microglia and inducing apoptosis in neurogenic zones. However, the causal relationship between microglial activation and the impairment of neurogenesis as well as the relevant molecular mechanisms involved in microRNA (miR) remain unknown. In the present study, we employed immunohistochemistry and real-time RT-PCR to study the microglial activation and miRNA expression in mouse brains. Real-time RT-PCR, western blot, ELISA, cell proliferation and cytotoxicity assay were used in BV2 and mouse neural stem cells (NSCs). In the mouse model, we found the acute activation of microglia at 1 day and an increased number of microglial cells at 1, 7 and 120 days after irradiation at postnatal day 3 (P3), day 10 (P10) and day 21 (P21), respectively. In cell models, the activation of BV2, a type of microglial cell line, was observed after gamma irradiation. Real-time RT-PCR analysis revealed a deceased expression of miR-181b-2-3p and an increased expression of its target SRY-related high-mobility group box transcription factor 21 (SOX21) in a dose- and time-dependent fashion. The results of the luciferase reporter assay confirmed that SOX21 was the target of miR-181b-2-3p. Furthermore, SOX21 knockdown by siRNA inhibited the activation of microglia, thereby suggesting that the direct interaction of 181b-2-3p with SOX21 might be involved in radiation-induced microglial activation and proliferation. Interestingly, the gamma irradiation of NSCs increased miR-181b-2-3p expression but decreased SOX21 mRNA, which was the opposite of irradiation-induced expression in BV2 cells. As irradiation reduced the viability and proliferation of NSCs, whereas the overexpression of SOX21 restored the impaired cell viability and promoted the proliferation of NSCs, the findings suggest that the radiation-induced interaction of miR-181b-2-3p with SOX21 may play dual roles in microglia and NSCs, respectively, leading to the impairment of brain neurogenesis. Full article
(This article belongs to the Special Issue microRNA as Biomarker II)
Show Figures

Graphical abstract

21 pages, 6510 KiB  
Article
Gamma-Tocotrienol Modulates Total-Body Irradiation-Induced Hematopoietic Injury in a Nonhuman Primate Model
by Tarun K. Garg, Sarita Garg, Isabelle R. Miousse, Stephen Y. Wise, Alana D. Carpenter, Oluseyi O. Fatanmi, Frits van Rhee, Vijay K. Singh and Martin Hauer-Jensen
Int. J. Mol. Sci. 2022, 23(24), 16170; https://doi.org/10.3390/ijms232416170 - 18 Dec 2022
Cited by 18 | Viewed by 2513
Abstract
Radiation exposure causes acute damage to hematopoietic and immune cells. To date, there are no radioprotectors available to mitigate hematopoietic injury after radiation exposure. Gamma-tocotrienol (GT3) has demonstrated promising radioprotective efficacy in the mouse and nonhuman primate (NHP) models. We determined GT3-mediated hematopoietic [...] Read more.
Radiation exposure causes acute damage to hematopoietic and immune cells. To date, there are no radioprotectors available to mitigate hematopoietic injury after radiation exposure. Gamma-tocotrienol (GT3) has demonstrated promising radioprotective efficacy in the mouse and nonhuman primate (NHP) models. We determined GT3-mediated hematopoietic recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques divided into two groups received either vehicle or GT3, 24 h prior to TBI. Four animals in each treatment group were exposed to either 4 or 5.8 Gy TBI. Flow cytometry was used to immunophenotype the bone marrow (BM) lymphoid cell populations, while clonogenic ability of hematopoietic stem cells (HSCs) was assessed by colony forming unit (CFU) assays on day 8 prior to irradiation and days 2, 7, 14, and 30 post-irradiation. Both radiation doses showed significant changes in the frequencies of B and T-cell subsets, including the self-renewable capacity of HSCs. Importantly, GT3 accelerated the recovery in CD34+ cells, increased HSC function as shown by improved recovery of CFU-granulocyte macrophages (CFU-GM) and burst-forming units erythroid (B-FUE), and aided the recovery of circulating neutrophils and platelets. These data elucidate the role of GT3 in hematopoietic recovery, which should be explored as a potential medical countermeasure to mitigate radiation-induced injury to the hematopoietic system. Full article
Show Figures

Figure 1

24 pages, 10270 KiB  
Article
New Properties of a Well-Known Antioxidant: Pleiotropic Effects of Human Lactoferrin in Mice Exposed to Gamma Irradiation in a Sublethal Dose
by Marina Yu. Kopaeva, Irina B. Alchinova, Anton B. Cherepov, Marina S. Demorzhi, Mikhail V. Nesterenko, Irina Yu. Zarayskaya and Mikhail Yu. Karganov
Antioxidants 2022, 11(9), 1833; https://doi.org/10.3390/antiox11091833 - 18 Sep 2022
Cited by 11 | Viewed by 2633
Abstract
We studied the effects of human lactoferrin (hLf), a multifunctional protein from the transferrin family, on integral (survival, lifespan during the experiment, body weight, behavior, subfractional compositions of blood serum) and systemic (hemoglobin level, leukocyte number, differential leukocyte count, histological structure of the [...] Read more.
We studied the effects of human lactoferrin (hLf), a multifunctional protein from the transferrin family, on integral (survival, lifespan during the experiment, body weight, behavior, subfractional compositions of blood serum) and systemic (hemoglobin level, leukocyte number, differential leukocyte count, histological structure of the liver and spleen) parameters of the body in mice after acute gamma irradiation in a sublethal dose. The experiments were performed on male C57BL/6 mice. The mice in the experimental groups were exposed to whole-body gamma radiation in a dose of 7.5 Gy from a 60Co source. Immediately after irradiation and 24 h after it, some animals received an intraperitoneal injection of hLf (4 mg/mouse). Single or repeated administration of hLf had a positive pleiotropic effect on irradiated animals: animal survival increased from 28% to 78%, and the mean life expectancy during the experiment (30 days) increased from 16 to 26 days. A compensatory effect of hLf on radiation-induced body weight loss, changes in homeostasis parameters, and a protective effect on the structural organization of the spleen were demonstrated. These data indicate that Lf has potential as a means of early therapy after radiation exposure. Full article
Show Figures

Graphical abstract

25 pages, 6390 KiB  
Article
Neuroprotective Effect of Gold Nanoparticles and Alpha-Lipoic Acid Mixture against Radiation-Induced Brain Damage in Rats
by Noha F. Abdelkader, Ahmed I. El-Batal, Yara M. Amin, Asrar M. Hawas, Seham H. M. Hassan and Nihad I. Eid
Int. J. Mol. Sci. 2022, 23(17), 9640; https://doi.org/10.3390/ijms23179640 - 25 Aug 2022
Cited by 18 | Viewed by 2758
Abstract
The current study aims to evaluate the possible neuroprotective impact of gold nanoparticles (AuNPs) and an alpha-lipoic acid (ALA) mixture against brain damage in irradiated rats. AuNPs were synthesized and characterized using different techniques. Then, a preliminary investigation was carried out to determine [...] Read more.
The current study aims to evaluate the possible neuroprotective impact of gold nanoparticles (AuNPs) and an alpha-lipoic acid (ALA) mixture against brain damage in irradiated rats. AuNPs were synthesized and characterized using different techniques. Then, a preliminary investigation was carried out to determine the neuroprotective dose of AuNPs, where three single doses (500, 1000, and 1500 µg/kg) were orally administrated to male Wistar rats, one hour before being exposed to a single dose of 7Gy gamma radiation. One day following irradiation, the estimation of oxidative stress biomarkers (malondialdehyde, MDA; glutathione peroxidase, GPX), DNA fragmentation, and histopathological alterations were performed in brain cortical and hippocampal tissues in both normal and irradiated rats. The chosen neuroprotective dose of AuNPs (1000 µg/kg) was processed with ALA (100 mg/kg) to prepare the AuNPs-ALA mixture. The acute neuroprotective effect of AuNPs-ALA in irradiated rats was determined against valproic acid as a neuroprotective centrally acting reference drug. All drugs were orally administered one hour before the 7Gy-gamma irradiation. One day following irradiation, animals were sacrificed and exposed to examinations such as those of the preliminary experiment. Administration of AuNPs, ALA, and AuNPs-ALA mixture before irradiation significantly attenuated the radiation-induced oxidative stress through amelioration of MDA content and GPX activity along with alleviating DNA fragmentation and histopathological changes in both cortical and hippocampal tissues. Notably, the AuNPs-ALA mixture showed superior effect compared to that of AuNPs or ALA alone, as it mitigated oxidative stress, DNA damage, and histopathological injury collectively. Administration of AuNPs-ALA resulted in normalized MDA content, increased GPX activity, restored DNA content in the cortex and hippocampus besides only mild histopathological changes. The present data suggest that the AuNPs-ALA mixture may be considered a potential candidate for alleviating radiation-associated brain toxicity. Full article
(This article belongs to the Special Issue Bio-Engineering and Nano-Medicine 2.0)
Show Figures

Figure 1

17 pages, 2995 KiB  
Article
Chronic Gamma Irradiation Changes Phenotype and Gene Expression Partially Transmitted to Next-Generation Tomato Seedlings
by Seong-Min Kim, Yeong Deuk Jo, Jae-In Chun, Jin-Baek Kim and Jin-Ho Kang
Agronomy 2021, 11(8), 1638; https://doi.org/10.3390/agronomy11081638 - 17 Aug 2021
Cited by 9 | Viewed by 3199
Abstract
Compared to the studies on acute irradiation of seeds, fewer studies have reported on the chronic irradiation of seedlings, especially in fruit-bearing vegetables. We examined the effects of chronic gamma irradiation on tomato (Solanum lycopersicum ‘Micro-Tom’) seedlings exposed to gamma rays (50, [...] Read more.
Compared to the studies on acute irradiation of seeds, fewer studies have reported on the chronic irradiation of seedlings, especially in fruit-bearing vegetables. We examined the effects of chronic gamma irradiation on tomato (Solanum lycopersicum ‘Micro-Tom’) seedlings exposed to gamma rays (50, 100, 150, and 200 Gy) for 4 weeks. As the total dose of gamma rays increased, leaf length, trichome density, and seed number were reduced in the irradiated seedlings (M1). Additionally, a change in fruit shape was observed. Chronic gamma irradiation reduced the expression of two trichome-related genes and affected the expression levels of 11 reactive oxygen species (ROS)-related genes. We examined the transmittance of these effects using M2 plants. The trichome density and fruit shape were similar between M2 and control plants; however, a reduction in leaf length and seed number was detected in M2 plants. Interestingly, changes in the expression of four ROS-related genes (ZAT10, Mn-SOD, POD3, and RBOH1) found in M1 were detected in M2 plants. Thus, the changes in phenotype and gene expression induced by chronic gamma irradiation were transmitted to the next generation. Additionally, we found novel mutants from M2 plants, suggesting that chronic gamma irradiation may be considered in tomato mutation breeding. Full article
Show Figures

Figure 1

Back to TopTop