Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = acoustics of non-uniform media

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4194 KiB  
Article
Algorithm for Acoustic Wavefield in Space-Wavenumber Domain of Vertically Heterogeneous Media Using NUFFT
by Ying Zhang and Shikun Dai
Mathematics 2025, 13(4), 571; https://doi.org/10.3390/math13040571 - 9 Feb 2025
Viewed by 659
Abstract
Balancing efficiency and accuracy is often challenging in the numerical solution of three-dimensional (3D) point source acoustic wave equations for layered media. To overcome this, an efficient solution method in the spatial-wavenumber domain is proposed, utilizing the Non-Uniform Fast Fourier Transform (NUFFT) to [...] Read more.
Balancing efficiency and accuracy is often challenging in the numerical solution of three-dimensional (3D) point source acoustic wave equations for layered media. To overcome this, an efficient solution method in the spatial-wavenumber domain is proposed, utilizing the Non-Uniform Fast Fourier Transform (NUFFT) to achieve arbitrary non-uniform sampling. By performing a two-dimensional (2D) Fourier transform on the 3D acoustic wave equation in the horizontal direction, the 3D equation is transformed into a one-dimensional (1D) space-wavenumber-domain ordinary differential equation, effectively simplifying significant 3D problems into one-dimensional problems and significantly reducing the demand for memory. The one-dimensional finite-element method is applied to solve the boundary value problem, resulting in a pentadiagonal system of equations. The Thomas algorithm then efficiently solves the system, yielding the layered wavefield distribution in the space-wavenumber domain. Finally, the wavefield distribution in the spatial domain is reconstructed through a 2D inverse Fourier transform. The correctness of the algorithm was verified by comparing it with the finite-element method. The analysis of the half-space model shows that this method can accurately calculate the wavefield distribution in the air layer considering the air layer while exhibiting high efficiency and computational stability in ultra-large-scale models. The three-layer medium model test further verified the adaptability and accuracy of the algorithm in calculating the distribution of acoustic waves in layered media. Through a sensitivity analysis, it is shown that the denser the mesh node partitioning, the higher the medium velocity, and the lower the point source frequency, the higher the accuracy of the algorithm. An algorithm efficiency analysis shows that this method has extremely low memory usage and high computational efficiency and can quickly solve large-scale models even on personal computers. Compared with traditional FEM, the algorithm has much higher advantages in terms of memory usage and efficiency. This method provides a new approach to the numerical solution of partial differential equations. It lays an essential foundation for background field calculation in the scattering seismic numerical simulation and full-waveform inversion of acoustic waves, with strong theoretical significance and practical application value. Full article
Show Figures

Figure 1

21 pages, 12312 KiB  
Article
Global Sound Absorption Prediction for a Composite Coating Laid on an Underwater Submersible in Debonding States
by Zhifu Zhang, Yizhe Huang, Jiaxuan Wang, Zhuang Li, Shiyuan Zhang and Xirui Zhang
J. Mar. Sci. Eng. 2023, 11(9), 1671; https://doi.org/10.3390/jmse11091671 - 25 Aug 2023
Cited by 4 | Viewed by 1417
Abstract
To address the problem that anechoic coatings frequently fall off from modern submersible hulls and are detrimental to the realization of underwater acoustic stealth, this paper focuses on the broadband sound absorbing of acoustic coverings in debonding states from fully bonded span to [...] Read more.
To address the problem that anechoic coatings frequently fall off from modern submersible hulls and are detrimental to the realization of underwater acoustic stealth, this paper focuses on the broadband sound absorbing of acoustic coverings in debonding states from fully bonded span to fully shedded conditions. Based on the non-uniform waveguide theory, subdomain splitting approach, and wave propagation theory in layered media, a global transfer matrix method (TMM) is developed for predicting the sound absorption of a composite overburden with periodic cavities in all peeling situations. Meanwhile, the corresponding acoustic-structure fully coupled finite element (FE) simulation and hydroacoustic impedance tube-based absorption experiment are sequentially performed for the lining in a semi-bonded state to comprehensively verify the accuracy and reliability of the present analytical methodology. Then, the influence laws of debonding states, material properties, and geometric parameters on the global absorption performance are investigated in depth to reveal the multiple energy dissipation mechanisms. The results show that the shedding state primarily affects the sound absorption characteristics of anechoic coatings in the low- to mid-frequency band below 7 kHz. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 430 KiB  
Article
Diagnostic Relations between Pressure and Entropy Perturbations for Acoustic and Entropy Modes
by Sergey Leble and Ekaterina Smirnova
Atmosphere 2021, 12(9), 1164; https://doi.org/10.3390/atmos12091164 - 10 Sep 2021
Viewed by 1793
Abstract
Diagnostics and decomposition of atmospheric disturbances in a planar flow are considered and applied to numerical modelling with the direct possibility to use in atmosphere monitoring especially in such strong events which follow magnetic storms and other large scale atmospheric phenomena. The study [...] Read more.
Diagnostics and decomposition of atmospheric disturbances in a planar flow are considered and applied to numerical modelling with the direct possibility to use in atmosphere monitoring especially in such strong events which follow magnetic storms and other large scale atmospheric phenomena. The study examines a situation in which the stationary equilibrium temperature of a gas may depend on a vertical coordinate, which essentially complicates the diagnostics. The relations connecting perturbations for acoustic and entropy (stationary) modes are analytically established and led to the solvable diagnostic equations. These equations specify acoustic and entropy modes in an arbitrary stratified gas under the condition of stability. The diagnostic relations are independent of time and specify the acoustic and the entropy modes. They provide the ability to decompose the total vector of perturbations into acoustic and non-acoustic (entropy) parts uniquely at any instant within the total accessible heights range. As a prospective model, we consider the diagnostics at the height interval 120–180 km, where the equilibrium temperature of a gas depends linearly on the vertical coordinate. For such a heights range it is possible to proceed with analytical expressions for pressure and entropy perturbations of gas variables. Individual profiles of acoustic and entropy parts for some data are illustrated by the plots for the pure numerical data against those obtained by the model. The total energy of a flow is determined for both approaches and its vertical profiles are compared. Full article
Show Figures

Figure 1

Back to TopTop