Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = acetaldehyde diethyl acetal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1235 KiB  
Article
Multicomponent Synthesis of Unsymmetrical Derivatives of 4-Methyl-Substituted 5-Nitropyridines
by Daria M. Turgunalieva, Alena L. Stalinskaya, Ilya I. Kulakov, Galina P. Sagitullina, Victor V. Atuchin, Andrey V. Elyshev and Ivan V. Kulakov
Processes 2023, 11(2), 576; https://doi.org/10.3390/pr11020576 - 14 Feb 2023
Cited by 7 | Viewed by 2630
Abstract
The multicomponent reaction of 2-nitroacetophenone (or nitroacetone), acetaldehyde diethyl acetal, β-dicarbonyl compound, and ammonium acetate in an acetic acid solution allowed the acquisition of previously undescribed 4-methyl-substituted derivatives of 5-nitro-1,4-dihydropyridine in satisfactory yields. The oxidation of the obtained 5-nitro-1,4-dihydropyridine derivatives resulted in the [...] Read more.
The multicomponent reaction of 2-nitroacetophenone (or nitroacetone), acetaldehyde diethyl acetal, β-dicarbonyl compound, and ammonium acetate in an acetic acid solution allowed the acquisition of previously undescribed 4-methyl-substituted derivatives of 5-nitro-1,4-dihydropyridine in satisfactory yields. The oxidation of the obtained 5-nitro-1,4-dihydropyridine derivatives resulted in the corresponding 2,4-dimethyl-5-nitropyridines. In addition, for the first time in the synthesis of unsymmetrical 1,4-dihydropyridines by the Hantzsch reaction acetaldehyde, diethyl acetal was used as a source of acetaldehyde. The use of more volatile and sufficiently reactive acetaldehyde in this reaction did not lead to a controlled synthesis of unsymmetrical 5-nitro-1,4-dihydropyridines. The proposed multicomponent approach to the synthesis of 4-methyl-substituted 5-nitro-1,4-dihydropyridines and their subsequent aromatization into pyridines made it possible to obtain previously undescribed and hardly accessible substituted 5(3)-nitropyridines. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

19 pages, 4171 KiB  
Article
Synthesis of Oxygenated Hydrocarbons from Ethanol over Sulfided KCoMo-Based Catalysts: Influence of Novel Fiber- and Powder-Activated Carbon Supports
by Tshepo D. Dipheko, Vladimir V. Maximov, Mohamed E. Osman, Oleg L. Eliseev, Alexander G. Cherednichenko, Tatiana F. Sheshko and Victor M. Kogan
Catalysts 2022, 12(12), 1497; https://doi.org/10.3390/catal12121497 - 23 Nov 2022
Cited by 8 | Viewed by 1998
Abstract
Ethanol has become a viable feedstock for basic organic synthesis. The catalytic conversion of ethanol provides access to such chemicals as diethyl ether, ethyl acetate, and acetaldehyde. Carbonaceous materials are extensively studied as supports for heterogeneous catalysts due to their chemical and thermal [...] Read more.
Ethanol has become a viable feedstock for basic organic synthesis. The catalytic conversion of ethanol provides access to such chemicals as diethyl ether, ethyl acetate, and acetaldehyde. Carbonaceous materials are extensively studied as supports for heterogeneous catalysts due to their chemical and thermal stability, high surface area, and tunable texture. In this paper, ethanol conversion over K10Co3.7Mo12S-catalysts supported on novel activated carbon (AC) materials (i.e., novel powder-AC (DAS and YPK-1), fiber non-woven AC material (AHM), and fabric active sorption (TCA)) was investigated. The catalysts were prepared by the incipient wetness co-impregnation method followed by sulfidation. The catalysts were characterized by employing N2 adsorption–desorption measurements, TEM, SEM/EDX, UV–Vis spectroscopy, and XRF. Catalytic performance was assessed in a fixed-bed down-flow reactor operating at 320 °C, 2.5 MPa, and with continuous ethanol feeding in an He atmosphere. Activity is highly dependent on the support type and catalyst’s textural properties. The activity of the fiber-supported catalysts was found to be greater than the powder-supported catalysts. Ethanol conversion at T = 320 °C, P = 2.5 MPa, and GHSV = 760 L h−1 kgcat−1 increased as follows: (38.7%) KCoMoS2/YPK-1 < (49.5%) KCoMoS2/DAS < (58.2%) KCoMoS2/TCA < (67.1%) KCoMoS2/AHM. Catalysts supported by powder-AC enhanced the formation of MoS2-crystallites, whereas the high acidity of fiber-AC seemed to inhibit the formation of MoS2-crystallites. Simultaneously, a high surface area and a microporous catalytic structure enhance the formation of oxygenates from hydrocarbons. The dehydration and dehydrogenation reactions, which led to the creation of ethene and acetaldehyde, were shown to require a highly acidic catalyst, while the synthesis of ethyl acetate and higher alcohols required a less acidic catalyst. Full article
Show Figures

Figure 1

10 pages, 1936 KiB  
Article
Chitosan Cross-Linking with Acetaldehyde Acetals
by Alexander Pestov, Yuliya Privar, Arseny Slobodyuk, Andrey Boroda and Svetlana Bratskaya
Biomimetics 2022, 7(1), 10; https://doi.org/10.3390/biomimetics7010010 - 6 Jan 2022
Cited by 9 | Viewed by 4133
Abstract
Here we demonstrate the possibility of using acyclic diethylacetal of acetaldehyde (ADA) with low cytotoxicity for the fabrication of hydrogels via Schiff bases formation between chitosan and acetaldehyde generated in situ from acetals in chitosan acetate solution. This approach is more convenient than [...] Read more.
Here we demonstrate the possibility of using acyclic diethylacetal of acetaldehyde (ADA) with low cytotoxicity for the fabrication of hydrogels via Schiff bases formation between chitosan and acetaldehyde generated in situ from acetals in chitosan acetate solution. This approach is more convenient than a direct reaction between chitosan and acetaldehyde due to the better commercial availability and higher boiling point of the acetals. Rheological data confirmed the formation of intermolecular bonds in chitosan solution after the addition of acetaldehyde diethyl acetal at an equimolar NH2: acetal ratio. The chemical structure of the reaction products was determined using elemental analysis and 13C NMR and FT-IR spectroscopy. The formed chitosan-acetylimine underwent further irreversible redox transformations yielding a mechanically stable hydrogel insoluble in a broad pH range. The reported reaction is an example of when an inappropriate selection of acid type for chitosan dissolution prevents hydrogel formation. Full article
Show Figures

Figure 1

21 pages, 810 KiB  
Article
Modelling Changes in Volatile Compounds in British Columbian Varietal Wines That Were Bottle Aged for Up to 120 Months
by Masoumeh Bejaei, Margaret A. Cliff, Lufiani L. Madilao and Hennie J. J. vanVuuren
Beverages 2019, 5(3), 57; https://doi.org/10.3390/beverages5030057 - 6 Sep 2019
Cited by 4 | Viewed by 3780
Abstract
This research quantified 46 volatile compounds in vintage wines (1998–2005) from British Columbia (BC), which had been bottle-aged for up to 120 months. Wines were analyzed up to five times, between December 2003 and October 2008. Compounds were identified using gas chromatography mass [...] Read more.
This research quantified 46 volatile compounds in vintage wines (1998–2005) from British Columbia (BC), which had been bottle-aged for up to 120 months. Wines were analyzed up to five times, between December 2003 and October 2008. Compounds were identified using gas chromatography mass spectrometry (GC-MS) and their concentrations were related to “wine age” using single linear regression (SLR). SLR models were developed for each wine compound (eight alcohol, 12 ester/acetate, one acid, one aldehyde, one sulfur) in eight varietal wines: six red (Cabernet franc, Cabernet Sauvignon, Meritage, Merlot, Pinot noir, Syrah) and two white (Chardonnay, Pinot gris). Parameter estimates (b0, intercept; b1, slope) and R2 values for models were reported for each compound and each variety. Most of the significant SLR models (109/123) had negative slopes (−b1 coefficients), indicating a decrease in the compounds’ concentration with “wine age”. The b1 coefficients were very small for isobutyl acetate, ethyl isovalerate and ethyl decanoate (−0.00013 to −0.0006 mg/L/mon) and largest (most negative) for 3-methyl-1-butanol, ethyl lactate and isobutyl alcohol (−2.26 to −6.26 mg/L/mon). A few SLR models (14/123) had positive slopes (+b1 coefficients), indicating an increase in the compounds’ concentration with “wine age”, particularly for acetaldehyde, diethyl succinate, ethyl formate and dimethyl sulfide. The +b1 coefficients were smallest for ethyl decanoate (0.0001 mg/L/mon) and dimethyl sulfide (0.00024 mg/L/mon) and largest for dimethyl succinate and acetaldehyde (0.06 mg/L/mon). These values varied by four orders of magnitude (104), reflecting the large concentration range observed for the different volatile compounds. The work provided, for the first time, an empirical (non-theoretical) approach to documenting the evolution of volatile compounds in BC wines. It equipped the industry with an easy-to-use new tool for predicting the concentration of desirable or undesirable compounds in their wines and assisted the industry with decision making regarding the release of their wines into the marketplace. Full article
(This article belongs to the Special Issue How Important Volatile Compounds Are for the Success of Beverages?)
Show Figures

Figure 1

14 pages, 4780 KiB  
Article
Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts
by Jeerati Ob-eye, Piyasan Praserthdam and Bunjerd Jongsomjit
Catalysts 2019, 9(1), 66; https://doi.org/10.3390/catal9010066 - 9 Jan 2019
Cited by 58 | Viewed by 17206
Abstract
Recently, the interest in ethanol production from renewable natural sources in Thailand has been receiving much attention as an alternative form of energy. The low-cost accessibility of ethanol has been seen as an interesting topic, leading to the extensive study of the formation [...] Read more.
Recently, the interest in ethanol production from renewable natural sources in Thailand has been receiving much attention as an alternative form of energy. The low-cost accessibility of ethanol has been seen as an interesting topic, leading to the extensive study of the formation of distinct chemicals, such as ethylene, diethyl ether, acetaldehyde, and ethyl acetate, starting from ethanol as a raw material. In this paper, ethanol dehydrogenation to acetaldehyde in a one-step reaction was investigated by using commercial activated carbon with four different metal-doped catalysts. The reaction was conducted in a packed-bed micro-tubular reactor under a temperature range of 250–400 °C. The best results were found by using the copper doped on an activated carbon catalyst. Under this specified condition, ethanol conversion of 65.3% with acetaldehyde selectivity of 96.3% at 350 °C was achieved. This was probably due to the optimal acidity of copper doped on the activated carbon catalyst, as proven by the temperature-programmed desorption of ammonia (NH3-TPD). In addition, the other three catalyst samples (activated carbon, ceria, and cobalt doped on activated carbon) also favored high selectivity to acetaldehyde (>90%). In contrast, the nickel-doped catalyst was found to be suitable for ethylene production at an operating temperature of 350 °C. Full article
Show Figures

Graphical abstract

Back to TopTop