Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = abiotic methanogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4828 KiB  
Review
Methane Biofiltration Processes: A Summary of Biotic and Abiotic Factors
by Fatemeh Ahmadi, Tatiana Bodraya and Maximilian Lackner
Methane 2024, 3(1), 122-148; https://doi.org/10.3390/methane3010008 - 21 Feb 2024
Cited by 6 | Viewed by 4052
Abstract
The ongoing yearly rise in worldwide methane (CH4) emissions is mostly due to human activities. Nevertheless, since over half of these emissions are scattered and have a concentration of less than 3% (v/v), traditional physical–chemical methods are [...] Read more.
The ongoing yearly rise in worldwide methane (CH4) emissions is mostly due to human activities. Nevertheless, since over half of these emissions are scattered and have a concentration of less than 3% (v/v), traditional physical–chemical methods are not very effective in reducing them. In this context, biotechnologies like biofiltration using methane-consuming bacteria, also known as methanotrophs, offer a cost-efficient and practical approach to addressing diffuse CH4 emissions. The present review describes recent findings in biofiltration processes as one of the earliest biotechnologies for treating polluted air. Specifically, impacts of biotic (such as cooperation between methanotrophs and non-methanotrophic bacteria and fungi) and abiotic factors (such as temperature, salinity, and moisture) that influence CH4 biofiltration were compiled. Understanding the processes of methanogenesis and methanotrophy holds significant importance in the development of innovative agricultural practices and industrial procedures that contribute to a more favourable equilibrium of greenhouse gases. The integration of advanced genetic analyses can enable holistic approaches for unravelling the potential of biological systems for methane mitigation. This study pioneers a holistic approach to unravelling the biopotential of methanotrophs, offering unprecedented avenues for biotechnological applications. Full article
(This article belongs to the Special Issue Trends in Methane-Based Biotechnology)
Show Figures

Figure 1

23 pages, 4288 KiB  
Article
Late Mesozoic and Cenozoic Geodynamics of the Arctic Region: Implications for Abiogenic Generation of Hydrocarbons
by Nickolay Sorokhtin, Leopold Lobkovsky, Igor Semiletov, Eduard Shipilov, Sergey Nikiforov, Nikolay Kozlov, Natalia Shakhova, Roman Ananiev and Dmitry Alekseev
Geosciences 2023, 13(3), 68; https://doi.org/10.3390/geosciences13030068 - 28 Feb 2023
Cited by 2 | Viewed by 2550
Abstract
Late Mesozoic and Cenozoic geodynamics of the Arctic region is discussed in the context of possible mechanisms which provide multistage cyclic transformations and transport of carbon through crust and mantle. Geodynamic processes control the abiogenic generation of hydrocarbons and the patterns of their [...] Read more.
Late Mesozoic and Cenozoic geodynamics of the Arctic region is discussed in the context of possible mechanisms which provide multistage cyclic transformations and transport of carbon through crust and mantle. Geodynamic processes control the abiogenic generation of hydrocarbons and the patterns of their localization. Possible mechanisms of abiotic hydrocarbon generation are explained in the context of carbon transport from subduction zones to rifts and serpentinization of ultramafic rocks in the rifts in the case of the Laptev Sea and Gakkel Ridge areas. The carbon of shallow crust origin migrates with encapsulated fragments of marine sediments which are consumed in the Pacific subduction zone where they become destroyed and transformed by different chemical and physical processes. The resulting C-species are involved in mantle convection flows and reach the continental rifts of the Laptev Sea and the Gakkel mid-ocean ridge. Thus, the hydrocarbons formed in the crust and in the mantle acquire signatures of abiotic origin. According to the authors, the scale of manifestation of abiogenic methanogenesis in the lower parts of the lithosphere and in the upper mantle is not so wide. Numerous small (mm and fractions of the mm) particles of exogenous matter and dispersed carbon pulled into the mantle can only form a stable crustal geochemical plume that propagates in the plane of movement of convective flows. Indirectly, the scale of manifestation of this process can be judged by the volumes of degassing of hydrocarbon and carbon dioxide gases, as well as hydrogen and its compounds in the rift systems of the earth’s crust, which are extremely insignificant. However, in the cold seas of the Eastern Arctic, massive emissions of bubble methane of mixed genesis were found. As shown in the literature, the range of variability of stable isotopes of carbon and 14C of methane in certain areas of discharge associated with rifting demonstrates values (anomalously heavy 13C, and young 14C) that can be considered as examples of presumably abiogenic origin. Our work is mostly theoretical and suggests further discussion and improvement of the mechanism of formation of abiogenic hydrocarbons and the processes of their transformation. Full article
(This article belongs to the Special Issue Permafrost and Gas Hydrate Response to Ground Temperature Rising)
Show Figures

Figure 1

30 pages, 1564 KiB  
Review
Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review
by Ana R. Castro, Gilberto Martins, Andreia F. Salvador and Ana J. Cavaleiro
Microorganisms 2022, 10(11), 2142; https://doi.org/10.3390/microorganisms10112142 - 29 Oct 2022
Cited by 17 | Viewed by 4889
Abstract
Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment [...] Read more.
Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment of contaminated matrices, both in situ in deep subsurfaces, or ex situ in bioreactors. In the latter, part of the energetic value of these compounds can be recovered in the form of biogas. Anaerobic degradation of petroleum hydrocarbons can be improved by various iron compounds, but different iron species exert distinct effects. For example, Fe(III) can be used as an electron acceptor in microbial hydrocarbon degradation, zero-valent iron can donate electrons for enhanced methanogenesis, and conductive iron oxides may facilitate electron transfers in methanogenic processes. Iron compounds can also act as hydrocarbon adsorbents, or be involved in secondary abiotic reactions, overall promoting hydrocarbon biodegradation. These multiple roles of iron are comprehensively reviewed in this paper and linked to key functional microorganisms involved in these processes, to the underlying mechanisms, and to the main influential factors. Recent research progress, future perspectives, and remaining challenges on the application of iron-assisted anaerobic hydrocarbon degradation are highlighted. Full article
(This article belongs to the Special Issue Microbial Biodegradation and Biotransformation 2.0)
Show Figures

Figure 1

12 pages, 1511 KiB  
Article
Autotrophic Acetate Production under Hydrogenophilic and Bioelectrochemical Conditions with a Thermally Treated Mixed Culture
by Lorenzo Cristiani, Jacopo Ferretti, Mauro Majone, Marianna Villano and Marco Zeppilli
Membranes 2022, 12(2), 126; https://doi.org/10.3390/membranes12020126 - 21 Jan 2022
Cited by 3 | Viewed by 2650
Abstract
Bioelectrochemical systems are emerging technologies for the reduction in CO2 in fuels and chemicals, in which anaerobic chemoautotrophic microorganisms such as methanogens and acetogens are typically used as biocatalysts. The anaerobic digestion digestate represents an abundant source of methanogens and acetogens microorganisms. [...] Read more.
Bioelectrochemical systems are emerging technologies for the reduction in CO2 in fuels and chemicals, in which anaerobic chemoautotrophic microorganisms such as methanogens and acetogens are typically used as biocatalysts. The anaerobic digestion digestate represents an abundant source of methanogens and acetogens microorganisms. In a mixed culture environment, methanogen’s inhibition is necessary to avoid acetate consumption by the presence of acetoclastic methanogens. In this study, a methanogenesis inhibition approach based on the thermal treatment of mixed cultures was adopted and evaluated in terms of acetate production under different tests consisting of hydrogenophilic and bioelectrochemical experiments. Batch experiments were carried out under hydrogenophilic and bioelectrochemical conditions, demonstrating the effectiveness of the thermal treatment and showing a 30 times higher acetate production with respect to the raw anaerobic digestate. Moreover, a continuous flow bioelectrochemical reactor equipped with an anion exchange membrane (AEM) successfully overcomes the methanogens reactivation, allowing for a continuous acetate production. The AEM membrane guaranteed the migration of the acetate from the biological compartment and its concentration in the abiotic chamber avoiding its consumption by acetoclastic methanogenesis. The system allowed an acetate concentration of 1745 ± 30 mg/L in the abiotic chamber, nearly five times the concentration measured in the cathodic chamber. Full article
(This article belongs to the Special Issue Membranes for Resource Recovery in Bioelectrochemical Systems)
Show Figures

Figure 1

15 pages, 1228 KiB  
Article
Does Addition of Phosphate and Ammonium Nutrients Affect Microbial Activity in Froth Treatment Affected Tailings?
by Juliana A. Ramsay, Mara R. de Lima e Silva, Michael A. R. Tawadrous and Bruce A. Ramsay
Microorganisms 2021, 9(11), 2224; https://doi.org/10.3390/microorganisms9112224 - 26 Oct 2021
Viewed by 2115
Abstract
We examined greenhouse gas (GHG) production upon the addition of ammonium and phosphate to mature fine tailing (MFT) samples from Alberta’s Pond 2/3 (at 5 and 15 m) and Pond 7 (12.5 m) in microcosm studies. The methane production rate in unamended Pond [...] Read more.
We examined greenhouse gas (GHG) production upon the addition of ammonium and phosphate to mature fine tailing (MFT) samples from Alberta’s Pond 2/3 (at 5 and 15 m) and Pond 7 (12.5 m) in microcosm studies. The methane production rate in unamended Pond 2/3 MFT correlated with sample age; the production rate was higher in the less dense, more recently discharged MFT samples and lower in the denser, deeper sample. Adding small amounts of naphtha increased methane production, but there was no correlation with increasing naphtha, indicating that naphtha may partition into bitumen, reducing its bioavailability. Although non-detectable phosphate and low ammonium in the pore water indicate that these nutrients were potentially limiting microbial activity, their addition did not significantly affect methanogenesis but somewhat enhanced sulphate and nitrate reduction. Neither ammonium nor phosphate were detected in the pore water when added at low concentrations, but when added at high concentrations, 25–35% phosphate and 30–45% ammonium were lost. These ions likely sorbed to MFT minerals such as kaolinite, which have microbial activity governed by phosphate/ammonium desorption. Hence, multiple limitations affected microbial activity. Sulphate was less effective than nitrate was in inhibiting methanogenesis because H2S may be a less effective inhibitor than NOx intermediates are, and/or H2S may be more easily abiotically removed. With nitrate reduction, N2O, a potent GHG was produced but eventually metabolized. Full article
(This article belongs to the Special Issue The Microbiology of Oil Sands Tailings)
Show Figures

Graphical abstract

14 pages, 2305 KiB  
Perspective
Redox Heterogeneity Entangles Soil and Climate Interactions
by Jared L. Wilmoth
Sustainability 2021, 13(18), 10084; https://doi.org/10.3390/su131810084 - 9 Sep 2021
Cited by 9 | Viewed by 3959
Abstract
Interactions between soils and climate impact wider environmental sustainability. Soil heterogeneity intricately regulates these interactions over short spatiotemporal scales and therefore needs to be more finely examined. This paper examines how redox heterogeneity at the level of minerals, microbial cells, organic matter, and [...] Read more.
Interactions between soils and climate impact wider environmental sustainability. Soil heterogeneity intricately regulates these interactions over short spatiotemporal scales and therefore needs to be more finely examined. This paper examines how redox heterogeneity at the level of minerals, microbial cells, organic matter, and the rhizosphere entangles biogeochemical cycles in soil with climate change. Redox heterogeneity is used to develop a conceptual framework that encompasses soil microsites (anaerobic and aerobic) and cryptic biogeochemical cycling, helping to explain poorly understood processes such as methanogenesis in oxygenated soils. This framework is further shown to disentangle global carbon (C) and nitrogen (N) pathways that include CO2, CH4, and N2O. Climate-driven redox perturbations are discussed using wetlands and tropical forests as model systems. Powerful analytical methods are proposed to be combined and used more extensively to study coupled abiotic and biotic reactions that are affected by redox heterogeneity. A core view is that emerging and future research will benefit substantially from developing multifaceted analyses of redox heterogeneity over short spatiotemporal scales in soil. Taking a leap in our understanding of soil and climate interactions and their evolving influence on environmental sustainability then depends on greater collaborative efforts to comprehensively investigate redox heterogeneity spanning the domain of microscopic soil interfaces. Full article
Show Figures

Figure 1

14 pages, 1449 KiB  
Article
Decreased Methane Emissions Associated with Methanogenic and Methanotrophic Communities in a Pig Manure Windrow Composting System under Calcium Superphosphate Amendment
by Yihe Zhang, Mengyuan Huang, Fengwei Zheng, Shumin Guo, Xiuchao Song, Shuwei Liu, Shuqing Li and Jianwen Zou
Int. J. Environ. Res. Public Health 2021, 18(12), 6244; https://doi.org/10.3390/ijerph18126244 - 9 Jun 2021
Cited by 8 | Viewed by 2893
Abstract
With the rapid growth of livestock breeding, manure composting has evolved to be an important source of atmospheric methane (CH4) which accelerates global warming. Calcium superphosphate (CaSSP), as a commonly used fertilizer, was proposed to be effective in reducing CH4 [...] Read more.
With the rapid growth of livestock breeding, manure composting has evolved to be an important source of atmospheric methane (CH4) which accelerates global warming. Calcium superphosphate (CaSSP), as a commonly used fertilizer, was proposed to be effective in reducing CH4 emissions from manure composting, but the intrinsic biological mechanism remains unknown. Methanogens and methanotrophs both play a key role in mediating CH4 fluxes, therefore we hypothesized that the CaSSP-mediated reduction in CH4 emissions was attributed to the shift of methanogens and methanotrophs, which was regulated by physicochemical parameter changes. To test this hypothesis, a 60-day pig manure windrow composting experiment was conducted to investigate the response of CH4 emissions to CaSSP amendment, with a close linkage to methanogenic and methanotrophic communities. Results showed that CaSSP amendment significantly reduced CH4 emissions by 49.5% compared with the control over the whole composting period. The decreased mcrA gene (encodes the α-subunit of methyl-coenzyme M reductase) abundance in response to CaSSP amendment suggested that the CH4 emissions were reduced primarily due to the suppressed microbial CH4 production. Illumina MiSeq sequencing analysis showed that the overall distribution pattern of methanogenic and methanotrophic communities were significantly affected by CaSSP amendment. Particularly, the relative abundance of Methanosarcina that is known to be a dominant group for CH4 production, significantly decreased by up to 25.3% accompanied with CaSSP addition. Only Type I methanotrophs was detected in our study and Methylocaldum was the dominant methanotrophs in this composting system; in detail, CaSSP amendment increased the relative abundance of OTUs belong to Methylocaldum and Methylobacter. Moreover, the increased SO42− concentration and decreased pH acted as two key factors influencing the methanogenic and methanotrophic composition, with the former has a negative effect on methanogenesis growth and can later promote CH4 oxidation at a low level. This study deepens our understanding of the interaction between abiotic factors, function microbiota and greenhouse gas (GHG) emissions, as well as provides implication for practically reducing composting GHG emissions. Full article
Show Figures

Figure 1

15 pages, 7164 KiB  
Communication
First Detection of Methane within Chromitites of an Archean-Paleoproterozoic Greenstone Belt in Brazil
by Yuri de Melo Portella, Federica Zaccarini and Giuseppe Etiope
Minerals 2019, 9(5), 256; https://doi.org/10.3390/min9050256 - 29 Apr 2019
Cited by 9 | Viewed by 3534
Abstract
Abiotic methane is widely documented in seeps, springs and aquifers associated with mafic-ultramafic rocks in Phanerozoic ophiolites, peridotite massifs and intrusions worldwide. Chromitites in ophiolites, in particular, have been interpreted as the rocks potentially generating methane though CO2 hydrogenation. Here, we document, [...] Read more.
Abiotic methane is widely documented in seeps, springs and aquifers associated with mafic-ultramafic rocks in Phanerozoic ophiolites, peridotite massifs and intrusions worldwide. Chromitites in ophiolites, in particular, have been interpreted as the rocks potentially generating methane though CO2 hydrogenation. Here, we document, for the first time, the presence of methane within chromitites in South America. We analyzed, through milling and gas extraction, the content of gas occluded in Cedrolina chromitite samples, belonging to the Pilar de Goiás greenstone belt in Brazil. The chromitites display significant gas concentrations up to 0.31 µg CH4/grock and 2800 ppmv of hydrogen, while the host talc schist is devoid of gas. Stable C isotope composition of methane (δ13C from −30 to −39.2‰) and the absence of organic-matter rich metasediments in the region suggest an abiotic origin. Hydrogen and methane concentrations appear related to high-Cr chromite modal content and to the presence of Ni-sulfides/alloys, which are potential catalysts of CO2 hydrogenation at temperatures above 200 °C. Accessory ruthenium-bearing minerals occurring in the chromitites could also act as catalysts, even at lower temperatures. Geothermometry of chlorite found in the chromitites constrains serpentinization at ~250 °C, during lower greenschist facies retrometamorphism. Hydrogen could be autochthonous, and thus formed under similar temperature, which we hypothesize represents the upper limit for abiotic methane generation in the area (250 °C). The Cedrolina chromitites are the first example of CH4 occurrence in ultramafic rocks related to an Archean-Paleoproterozoic greenstone belt. This may imply that serpentinized Cr-rich chromitites could have been sources of methane for the early Earth’s atmosphere. Full article
(This article belongs to the Special Issue Spinel Group Minerals)
Show Figures

Figure 1

18 pages, 1884 KiB  
Article
Long-Term Biogas Production from Glycolate by Diverse and Highly Dynamic Communities
by Susanne Günther, Daniela Becker, Thomas Hübschmann, Susann Reinert, Sabine Kleinsteuber, Susann Müller and Christian Wilhelm
Microorganisms 2018, 6(4), 103; https://doi.org/10.3390/microorganisms6040103 - 4 Oct 2018
Cited by 13 | Viewed by 4975
Abstract
Generating chemical energy carriers and bulk chemicals from solar energy by microbial metabolic capacities is a promising technology. In this long-term study of over 500 days, methane was produced by a microbial community that was fed by the mono-substrate glycolate, which was derived [...] Read more.
Generating chemical energy carriers and bulk chemicals from solar energy by microbial metabolic capacities is a promising technology. In this long-term study of over 500 days, methane was produced by a microbial community that was fed by the mono-substrate glycolate, which was derived from engineered algae. The microbial community structure was measured on the single cell level using flow cytometry. Abiotic and operational reactor parameters were analyzed in parallel. The R-based tool flowCyBar facilitated visualization of community dynamics and indicated sub-communities involved in glycolate fermentation and methanogenesis. Cell sorting and amplicon sequencing of 16S rRNA and mcrA genes were used to identify the key organisms involved in the anaerobic conversion process. The microbial community allowed a constant fermentation, although it was sensitive to high glycolate concentrations in the feed. A linear correlation between glycolate loading rate and biogas amount was observed (R2 = 0.99) for glycolate loading rates up to 1.81 g L−1 day−1 with a maximum in biogas amount of 3635 mL day−1 encompassing 45% methane. The cytometric diversity remained high during the whole cultivation period. The dominating bacterial genera were Syntrophobotulus, Clostridia genus B55_F, Aminobacterium, and Petrimonas. Methanogenesis was almost exclusively performed by the hydrogenotrophic genus Methanobacterium. Full article
(This article belongs to the Special Issue Metabolic Diversity of Anaerobic Microbial Communities)
Show Figures

Graphical abstract

Back to TopTop