Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ZnO/TM composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 29728 KiB  
Article
Development and Performance of Negative Ion Functional Blended Yarns and Double-Sided Knitted Fabrics Based on ZnO/TM/PET Fiber
by Yingzi Zhang, Mengxin Zhang, Jishu Zhang, Jianbing Wu and Jiajia Peng
Polymers 2025, 17(7), 905; https://doi.org/10.3390/polym17070905 - 27 Mar 2025
Viewed by 642
Abstract
Zinc oxide-modified tourmaline-based negative ion polyester fiber (ZnO/TM/PET), as a new functional fiber with excellent negative ion emission characteristics, is of great significance to human health, and its industrial application needs to be expanded and promoted. In this paper, using zinc oxide, tourmaline, [...] Read more.
Zinc oxide-modified tourmaline-based negative ion polyester fiber (ZnO/TM/PET), as a new functional fiber with excellent negative ion emission characteristics, is of great significance to human health, and its industrial application needs to be expanded and promoted. In this paper, using zinc oxide, tourmaline, and polyethylene terephthalate as the main raw materials, ZnO/TM/PET negative ion functional fiber with 5% ZnO/TM composites was prepared. Then, it was blended with cotton fiber and interknitted with wool yarn and spandex yarn, from which we developed five kinds of negative ion polyester/cotton-blended yarn and four different kinds of knitted double-sided fabric using different equipment and process parameters. The micromorphology of the fiber samples, the basic properties of the blended yarns, and the wearability and functional properties of the knitted fabrics were tested. The results show that the ZnO/TM negative ion additive is randomly dispersed in the polymer matrix without visible conglobation and the fiber has a good appearance. The blending ratio has an important effect on the properties of functional polyester/cotton blended yarn. The higher the ratio of negative ion polyester fiber in the blended yarn, the better the mechanical index of the blended yarn, the higher the negative ion emission, and the lower the hairiness index. The performances of fabric are influenced by the comprehensive action of fiber raw material type, yarn ratio, fabric tightness, and structure. The mechanical properties of the fabric knitted from negative ion polyester/cotton-blended yarn are lower than those made from negative ion polyester filament yarn. In the case of the same fabric structure, the negative ion emission performance, far-infrared emission performance, and antibacterial property of the fabric with a higher ratio of negative ion functional fiber is better than the lower ratio. With the same yarn composition, the negative ion emission performance and air permeability of the fabric with a loose structure are better than that of the fabric with a tight structure, but the moisture permeability, far-infrared emission properties, and antibacterial properties show little difference. Full article
(This article belongs to the Special Issue Technical Textile Science and Technology)
Show Figures

Figure 1

15 pages, 7087 KiB  
Article
Preparation and Performance of a Novel ZnO/TM/PET Composite Negative Ion Functional Fiber
by Mengxin Zhang, Jishu Zhang, Xin Lu, Jianbing Wu, Jiajia Peng, Wei Wang and Jin Tao
Polymers 2024, 16(10), 1439; https://doi.org/10.3390/polym16101439 - 19 May 2024
Cited by 2 | Viewed by 1786
Abstract
Using zinc oxide (ZnO), tourmaline (TM), and polyethylene terephthalate (PET) as main raw materials, a novel ZnO/TM/PET negative ion functional fiber was created. The rheological properties of a ZnO/TM/PET masterbatch were investigated; the morphology, XRD, and FT-IR of the fibers were observed; and [...] Read more.
Using zinc oxide (ZnO), tourmaline (TM), and polyethylene terephthalate (PET) as main raw materials, a novel ZnO/TM/PET negative ion functional fiber was created. The rheological properties of a ZnO/TM/PET masterbatch were investigated; the morphology, XRD, and FT-IR of the fibers were observed; and the mechanical properties, thermal properties, and negative ion release properties of the new fiber were tested. The results showed that the average particle size of the ZnO/TM composite is nearly 365 nm, with an increase in negative ion emission efficiency by nearly 50% compared to the original TM. The apparent viscosity of fiber masterbatch decreases with the increase in the addition of the ZnO/TM composite, and the rheological properties of the PET fiber masterbatch are not significantly effected, still showing shear thinning characteristics when the amount of addition reaches 10%. The ZnO/TM composite disperses well in the interior and surface of the ZnO/TM/PET fiber matrix. The prepared ZnO/TM/PET fiber has excellent properties, such as fineness of 1.54 dtex, glass transition temperature of 122.4 °C, fracture strength of 3.31 cN/dtex, and negative ion release of 1640/cm3, which shows great industrialization potential. Full article
(This article belongs to the Special Issue Advances in Polymer Fiber and Textiles)
Show Figures

Figure 1

19 pages, 4623 KiB  
Article
Biosorption of Escherichia coli Using ZnO-Trimethyl Chitosan Nanocomposite Hydrogel Formed by the Green Synthesis Route
by Ibrahim Birma Bwatanglang, Faruq Mohammad, John Nahadi Janet, Wasmia Mohammed Dahan, Hamad A. Al-Lohedan and Ahmed A. Soleiman
Gels 2023, 9(7), 581; https://doi.org/10.3390/gels9070581 - 17 Jul 2023
Cited by 3 | Viewed by 1927
Abstract
In this study, we tested the biosorption capacity of trimethyl chitosan (TMC)-ZnO nanocomposite (NC) for the adsorptive removal of Escherichia coli (E. coli) in aqueous suspension. For the formation of ZnO NPs, we followed the green synthesis route involving Terminalia mantaly [...] Read more.
In this study, we tested the biosorption capacity of trimethyl chitosan (TMC)-ZnO nanocomposite (NC) for the adsorptive removal of Escherichia coli (E. coli) in aqueous suspension. For the formation of ZnO NPs, we followed the green synthesis route involving Terminalia mantaly (TM) aqueous leaf extract as a reducing agent, and the formed ZnO particles were surface-coated with TMC biopolymer. On testing of the physicochemical characteristics, the TM@ZnO/TMC (NC) hydrogel showed a random spherical morphology with an average size of 31.8 ± 2.6 nm and a crystal size of 28.0 ± 7.7 nm. The zeta potential of the composite was measured to be 23.5 mV with a BET surface area of 3.01 m2 g−1. The spectral profiles of TM@ZnO/TMC NC hydrogel on interaction with Escherichia coli (E. coli) revealed some conformational changes to the functional groups assigned to the stretching vibrations of N-H, C-O-C, C-O ring, and C=O bonds. The adsorption kinetics of TM@ZnO/TMC NC hydrogel revealed the pseudo-second-order as the best fit mechanism for the E. coli biosorption. The surface homogeneity and monolayer adsorption of the TM@ZnO/TMC NC hydrogel reflects majorly the entire adsorption mechanism, observed to display the highest correlation for Jovanovic, Redlich–Peterson, and Langmuir’s isotherm models. Further, with the use of TM@ZnO/TMC NC hydrogel, we measured the highest adsorption capacity of E. coli to be 4.90 × 10 mg g−1, where an in-depth mechanistic pathway was proposed by making use of the FTIR analysis. Full article
(This article belongs to the Special Issue Gel Encapsulated Nanoparticles)
Show Figures

Figure 1

10 pages, 1656 KiB  
Article
Comparative Spectroscopic Investigation of Tm3+:Tellurite Glasses for 2-μm Lasing Applications
by Huseyin Cankaya, Adil Tolga Gorgulu, Adnan Kurt, Adolfo Speghini, Marco Bettinelli and Alphan Sennaroglu
Appl. Sci. 2018, 8(3), 333; https://doi.org/10.3390/app8030333 - 27 Feb 2018
Cited by 24 | Viewed by 3620
Abstract
We performed a comparative spectroscopic analysis on three novel Tm3+:tellurite-based glasses with the following compositions Tm2O3:TeO2-ZnO (TeZnTm), Tm2O3:TeO2-Nb2O5 (TeNbTm), and Tm3+:TeO2-K2 [...] Read more.
We performed a comparative spectroscopic analysis on three novel Tm3+:tellurite-based glasses with the following compositions Tm2O3:TeO2-ZnO (TeZnTm), Tm2O3:TeO2-Nb2O5 (TeNbTm), and Tm3+:TeO2-K2O-Nb2O5 (TeNbKTm), primarily for 2-μm laser applications. Tellurite glasses were prepared at different doping concentrations in order to investigate the effect of Tm3+ ion concentration as well as host composition on the stimulated emission cross sections and the luminescence quantum efficiencies. By performing Judd–Ofelt analysis, we determined the average radiative lifetimes of the 3H4 level to be 2.55 ± 0.07 ms, 2.76 ± 0.03 ms and 2.57 ± 0.20 ms for the TeZnTm, TeNbTm and TeNbKTm samples, respectively. We clearly observed the effect of the cross-relaxation, which becomes significant at higher Tm2O3 concentrations, leading to the quenching of 1460-nm emission and enhancement of 1860-nm emission. Furthermore, with increasing Tm2O3 concentrations, we observed a decrease in the fluorescence lifetimes as a result of the onset of non-radiative decay. For the 3H4 level, the highest obtained quantum efficiency was 32% for the samples with the lowest Tm2O3 ion concentration. For the 1860-nm emission band, the average emission cross section was determined to measure around 6.33 ± 0.34 × 10−21 cm2, revealing the potential of thulium-doped tellurite gain media for 2-μm laser applications in bulk and fiber configurations. Full article
(This article belongs to the Special Issue Rare-Earth Doping for Optical Applications)
Show Figures

Graphical abstract

14 pages, 2287 KiB  
Article
Unique Reactivity of Transition Metal Atoms Embedded in Graphene to CO, NO, O2 and O Adsorption: A First-Principles Investigation
by Minmin Chu, Xin Liu, Yanhui Sui, Jie Luo and Changgong Meng
Molecules 2015, 20(10), 19540-19553; https://doi.org/10.3390/molecules201019540 - 27 Oct 2015
Cited by 15 | Viewed by 6825
Abstract
Taking the adsorption of CO, NO, O2 and O as probes, we investigated the electronic structure of transition metal atoms (TM, TM = Fe, Co, Ni, Cu and Zn) embedded in graphene by first-principles-based calculations. We showed that these TM atoms can [...] Read more.
Taking the adsorption of CO, NO, O2 and O as probes, we investigated the electronic structure of transition metal atoms (TM, TM = Fe, Co, Ni, Cu and Zn) embedded in graphene by first-principles-based calculations. We showed that these TM atoms can be effectively stabilized on monovacancy defects on graphene by forming plausible interactions with the C atoms associated with dangling bonds. These interactions not only give rise to high energy barriers for the diffusion and aggregation of the embedded TM atoms to withstand the interference of reaction environments, but also shift the energy levels of TM-d states and regulate the reactivity of the embedded TM atoms. The adsorption of CO, NO, O2 and O correlates well with the weight averaged energy level of TM-d states, showing the crucial role of interfacial TM-C interactions on manipulating the reactivity of embedded TM atoms. These findings pave the way for the developments of effective monodispersed atomic TM composites with high stability and desired performance for gas sensing and catalytic applications. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop