Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Zhangjiang estuary

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2532 KiB  
Article
Distribution, Diversity, and Ecological Risks of Microplastics in Mangrove Ecosystems of a Southeastern Chinese Estuary
by Fengrun Wu, Chengyi Zhang, Xueyan Li, Sha Liu, Jinpu Wang and Weiqi Huang
Toxics 2025, 13(6), 494; https://doi.org/10.3390/toxics13060494 - 12 Jun 2025
Viewed by 486
Abstract
Mangrove ecosystems, serving as critical barriers at land–sea interfaces, face increasing threats from microplastic pollution. This study investigates the spatial distribution, diversity, and ecological risks of microplastics in sediments from the Zhangjiang Estuary mangroves, in southeastern China. Sampling was conducted along two gradients: [...] Read more.
Mangrove ecosystems, serving as critical barriers at land–sea interfaces, face increasing threats from microplastic pollution. This study investigates the spatial distribution, diversity, and ecological risks of microplastics in sediments from the Zhangjiang Estuary mangroves, in southeastern China. Sampling was conducted along two gradients: upstream–downstream and interior–edge habitats. The results revealed an average microplastic abundance of 219.5 ± 21.7 items·kg−1, dominated by fragments (53.3%) and fibers (35.0%). Additionally, 27.8% of the particles were in the 63–200 μm range, while 38.3% fell within the 200–500 μm range. A longitudinal decline in abundance from upstream to downstream was observed. Meanwhile, interior habitats exhibited significantly higher microplastic accumulation (292.86 ± 31.49 items·kg−1) than edge zones (142.50 ± 17.87 items·kg−1) (p < 0.05). The diversity index decreased downstream, with higher diversity in interior habitats, likely due to reduced terrestrial microplastic inputs and stronger tidal sorting in those areas. The ecological risk assessments indicated lower risks in Zhangjiang mangroves compared to global counterparts, though risks were elevated in interior habitats due to higher abundances of hazardous polymers (PVC, PS, PE). This study highlights the role of mangroves as microplastic sinks and advocates for multidimensional risk assessments integrating physical characteristics to guide conservation strategies in vulnerable estuarine ecosystems. Full article
Show Figures

Graphical abstract

17 pages, 4032 KiB  
Article
The Geometry of Southern China’s Mangroves: Small and Elongated
by Lin Zhang, Yijuan Deng, Wenqing Wang and Mao Wang
Forests 2025, 16(2), 212; https://doi.org/10.3390/f16020212 - 23 Jan 2025
Viewed by 902
Abstract
Mangrove wetlands are naturally divided into habitat patches by tidal creeks, with patch edges highly vulnerable to human activities and biological invasions, making them critical areas for mangrove degradation. Understanding the geometrical characteristics of these patches is essential for mangrove management in the [...] Read more.
Mangrove wetlands are naturally divided into habitat patches by tidal creeks, with patch edges highly vulnerable to human activities and biological invasions, making them critical areas for mangrove degradation. Understanding the geometrical characteristics of these patches is essential for mangrove management in the Anthropocene, yet their exploration remains limited. Using a high-resolution (2 m) mangrove distribution dataset from 2018, we analyzed the patch structure of mangroves in southern China. This study revealed predominantly small and elongated patches, with an average area of 0.044 km2 and a median of 0.011 km2 across 5857 patches. About 65% of patches had a major-axis length over twice their minor-axis length. The patch number and area peaked between 19° N and 22° N. The patch number and area peaked between 19° N and 22° N. In the 0.1° × 0.1° latitudinal-longitudinal grid, the maximum mangrove area was 9.03 km2, consisting of 192 patches. Additionally, the patch composition and geometric characteristics differed significantly among the existing reserves. These findings highlight the need to prioritize the patch geometry in management strategies, especially in regions with numerous small patches prone to degradation and invasion. Additionally, this study underscores a critical research gap: the ecological impacts of mangrove fragmentation on biodiversity and ecosystem services remain poorly understood. Future research should focus on how the patch structure and landscape configuration influence ecological processes in mangrove wetlands. Full article
Show Figures

Figure 1

24 pages, 78841 KiB  
Article
Mangroves Invaded by Spartina alterniflora Loisel: A Remote Sensing-Based Comparison for Two Protected Areas in China
by Di Dong, Qing Gao and Huamei Huang
Forests 2024, 15(10), 1788; https://doi.org/10.3390/f15101788 - 11 Oct 2024
Cited by 1 | Viewed by 1318
Abstract
Mangroves are one of the world’s most productive and ecologically important ecosystems, and they are threatened by the widespread invasion of Spartina alterniflora Loisel in China. As few studies have examined the spatial pattern differences of S. alterniflora invasion and the nearby mangroves [...] Read more.
Mangroves are one of the world’s most productive and ecologically important ecosystems, and they are threatened by the widespread invasion of Spartina alterniflora Loisel in China. As few studies have examined the spatial pattern differences of S. alterniflora invasion and the nearby mangroves in different latitudes, we chose the Zhangjiang Estuary and the Dandou Sea, two representative mangrove–salt marsh ecotones in the north and south of the Tropic of Cancer, as the study areas for comparison. The object-based image analysis and visual interpretation methods were combined to construct fine-scale mangrove and S. alterniflora maps using high-resolution satellite imagery from 2005 to 2019. We applied spatial analysis, centroid migration, and landscape indexes to analyze the spatio–temporal distribution changes of mangroves and S. alterniflora in these two ecotones over time. We used the landscape expansion index to investigate the S. alterniflora invasion process and expansion patterns. The annual change rates of mangrove and S. alterniflora areas in the Zhangjiang Estuary showed a continuous growth trend. However, the mangrove areas in the Dandou Sea showed a fluctuating trend of increasing, decreasing, and then increasing again, while S. alterniflora areas kept rising from 2005 to 2019. Spartina alterniflora showed larger annual change rates compared with mangroves, indicating rapid S. alterniflora invasion in the intertidal zones. The opposite centroid migration directions of mangroves and S. alterniflora and the decreasing distances between the mangrove and S. alterniflora centroids indirectly revealed the fierce competition between mangroves and S. alterniflora for habitat resources. Both regions saw a decrease in mangrove patch integrality and connectivity. The integrality of mangrove patches in the Zhangjiang Estuary was always higher than those in the Dandou Sea. We observed the growth stage (2011–2014) and outbreak stage (2014–2019) of S. alterniflora expansion in the Zhangjiang Estuary and the outbreak stage (2005–2009) and plateau stage (2009–2019) of S. alterniflora expansion in the Dandou Sea. The expansion pattern of S. alterniflora varies in time and place. Since the expansion of S. alterniflora in the outbreak stage is rapid, with a large annual change rate, early warning of S. alterniflora invasion is quite important for the efficient and economical removal of the invasive plant. Continuous and accurate monitoring of S. alterniflora is highly necessary and beneficial for the scientific management and sustainable development of coastal wetlands. Full article
Show Figures

Figure 1

16 pages, 6001 KiB  
Article
Coupling Imports of Dissolved Inorganic Nitrogen and Particulate Organic Matter by Aquaculture Sewage to Zhangjiang Estuary, Southeastern China
by Shuang He, Ta-Jen Chu, Zhiqiang Lu and Danyang Li
Water 2024, 16(14), 2054; https://doi.org/10.3390/w16142054 - 20 Jul 2024
Cited by 2 | Viewed by 1462
Abstract
Estuary ecosystems serve as crucial connectors between terrestrial and marine environments, thus playing vital roles in maintaining the ecological balance of coastal marine ecosystems. In recent years, the eutrophication in estuaries caused by aquaculture sewage has been revealed, highlighting the necessity to understand [...] Read more.
Estuary ecosystems serve as crucial connectors between terrestrial and marine environments, thus playing vital roles in maintaining the ecological balance of coastal marine ecosystems. In recent years, the eutrophication in estuaries caused by aquaculture sewage has been revealed, highlighting the necessity to understand its influence on the nutrient conditions and carbon storage of estuaries. In this study, δ15N and δ18O were used to indicate the contribution of aquaculture-derived sewage to dissolved inorganic nitrogen in Zhangjiang Estuary, and δ13C and C:N ratio were used to reveal its effects on the particulate organic matter. The major results are as follows: (1) Aquaculture water contributed 62~86% and 60~100% of the total nitrate and ammonium in Zhangjiang Estuary, respectively, and the drainage periods of the cultured species has a great influence on the content and composition of dissolved inorganic nitrogen. (2) Aquaculture water was also the major source of particulate organic matter (24~33% of the total content) here, most of which may be derived from crab ponds. (3) The imports of nutrients by aquaculture water may potentially regulate particulate organic matter in Zhangjiang Estuary by promoting the growth of phytoplankton and zooplankton. Our study revealed the coupling effects of aquaculture activities on the nitrogen and carbon storage in an estuarine ecosystem. It also indicates that isotopes may be efficient in the monitoring of a coastal environment, which may further aid the management of inshore cultivation. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

18 pages, 10684 KiB  
Article
Tracking the Dynamics of Spartina alterniflora with WorldView-2/3 and Sentinel-1/2 Imagery in Zhangjiang Estuary, China
by Di Dong, Huamei Huang and Qing Gao
Water 2024, 16(13), 1780; https://doi.org/10.3390/w16131780 - 23 Jun 2024
Cited by 4 | Viewed by 2171
Abstract
The invasion of Spartina alterniflora (S. alterniflora) has posed serious threats to the sustainability, quality and biodiversity of coastal wetlands. To safeguard coastal ecosystems, China has enacted large-scale S. alterniflora removal projects, which set the goal of effectively controlling S. alterniflora [...] Read more.
The invasion of Spartina alterniflora (S. alterniflora) has posed serious threats to the sustainability, quality and biodiversity of coastal wetlands. To safeguard coastal ecosystems, China has enacted large-scale S. alterniflora removal projects, which set the goal of effectively controlling S. alterniflora throughout China by 2025. The accurate monitoring of S. alterniflora with remote sensing is urgent and requisite for the scientific eradication, control and management of this invasive plant. In this study, we combined multi-temporal WorldView-2/3 (WV-2/3) and Sentinel-1/2 imagery to monitor the S. alterniflora dynamics before and after the S. alterniflora removal projects in Zhangjiang Estuary. We put forward a new method for S. alterniflora detection with eight-band WV-2/3 imagery. The proposed method first used NDVI to discriminate S. alterniflora from water, mud flats and mangroves based on Ostu thresholding and then used the red-edge, NIR1 and NIR2 bands and support vector machine (SVM) classifier to distinguish S. alterniflora from algae. Due to the contamination of frequent cloud cover and tidal inundation, the long revisit time of high-resolution satellite sensors and the short-term S. alterniflora removal projects, we combined Sentinel-1 SAR time series and Sentinel-2 optical imagery to monitor the S. alterniflora removal project status in 2023. The overall accuracies of the S. alterniflora detection results here are above 90%. Compared with the traditional SVM method, the proposed method achieved significantly higher identification accuracy. The S. alterniflora area was 115.19 hm2 in 2015, 152.40 hm2 in 2017 and 15.29 hm2 in 2023, respectively. The generated S. alterniflora maps clearly show the clonal growth of S. alterniflora in Zhangjiang Estuary from 2015 to 2017, and the large-scale S. alterniflora eradication project has achieved remarkable results with a removal rate of about 90% in the study area. With the continuous implementation of the “Special Action Plan for the Prevention and Control of Spartina alterniflora (2022–2025)” which aims to eliminate more than 90% of S. alterniflora in all provinces in China by 2025, the continual high-spatial resolution monitoring of S. alterniflora is crucial to control secondary invasion and restore coastal wetlands. Full article
(This article belongs to the Special Issue Conservation and Monitoring of Marine Ecosystem)
Show Figures

Figure 1

14 pages, 2742 KiB  
Article
Use of δ13C and δ15N as Indicators to Evaluate the Influence of Sewage on Organic Matter in the Zhangjiang Mangrove–Estuary Ecosystem, Southeastern China
by Danyang Li, Jinpei Yan, Zhiqiang Lu, Tianshu Chu, Jun Li and Tajen Chu
Water 2023, 15(20), 3660; https://doi.org/10.3390/w15203660 - 19 Oct 2023
Cited by 7 | Viewed by 2125
Abstract
Organic matter in the productive mangrove–estuary ecosystem plays an important role in global climate changes. In recent years, the eutrophication in such areas caused by anthropogenic inputs of sewage has been revealed, highlighting the need to understand its influence on organic matter. In [...] Read more.
Organic matter in the productive mangrove–estuary ecosystem plays an important role in global climate changes. In recent years, the eutrophication in such areas caused by anthropogenic inputs of sewage has been revealed, highlighting the need to understand its influence on organic matter. In this study, δ13C and δ15N were used to reveal the effects of sewage on organic matters in the Zhangjiang mangrove–estuary ecosystem. Our results indicate that sewage contributed the most of the total particulate organic matter (41%) in the Zhangjiang estuary, while mangrove plants contributed most of the soil organic matter (45%) in the neighboring Yunxiao mangrove. Phytoplankton was another important source of organic matter, accounting for about 21.8% and 49.8% of the particulate and soil organic matter, respectively. Sewage was also a major source of dissolved inorganic nitrogen, providing 28.9%, 12.2%, and 100% of the total NO3, NO2, and NH4+ in the Zhangjiang estuary, respectively. This may be the major reason for the productive phytoplankton here, which contributed 21.8% and 49.8% of the total particulate and soil organic matter in the study area. Our results reveal the direct contribution and the potential effects of sewage on the contents and bioavailability of organic matter in mangrove–estuary ecosystems, providing new insights into understanding the response of coastal areas to the influence of human activities. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

18 pages, 3912 KiB  
Article
Occurrence and Distribution of Tetrabromobisphenol A and Diversity of Microbial Community Structure in the Sediments of Mangrove
by Yongcan Jiang, Qiang Wang, Yunling Du, Dong Yang, Jianming Xu and Chongling Yan
Biology 2023, 12(5), 757; https://doi.org/10.3390/biology12050757 - 22 May 2023
Cited by 2 | Viewed by 2235
Abstract
The occurrence and distribution characteristics of tetrabromobisphenol A (TBBPA) and its relationship with microbial community diversity in different mangrove sediments need further investigation. The results of this study indicated levels of TBBPA in mangrove sediments from the Zhangjiang Estuary (ZJ), Jiulongjiang Estuary (JLJ), [...] Read more.
The occurrence and distribution characteristics of tetrabromobisphenol A (TBBPA) and its relationship with microbial community diversity in different mangrove sediments need further investigation. The results of this study indicated levels of TBBPA in mangrove sediments from the Zhangjiang Estuary (ZJ), Jiulongjiang Estuary (JLJ), and Quanzhou Bay (QZ) in Southeast China ranging from 1.80 to 20.46, 3.47 to 40.77, and 2.37 to 19.83 ng/g dry weight (dw), respectively. Mangrove sediments from JLJ contained higher levels of TBBPA, possibly due to agricultural pollution. A correlation analysis revealed a significant correlation between total organic carbon (TOC), total nitrogen (TN), and TBBPA distribution in ZJ and JLJ mangrove sediments, but not in QZ mangrove sediments. TOC significantly affected the distribution of TBBPA in mangrove sediments, but pH had no effect. High-throughput 16S rRNA gene sequencing showed that Pseudomonadota dominated the sediment bacteria followed by Chloroflexota, Actinobacteota, Bacillota, Acidobacteriota, Bacteroidota, and Aminicenantes in mangrove sediments. Although the microbial community structure of the ZJ, JLJ, and QZ mangrove sediments was similar, the taxonomic profile of their sensitive responders differed markedly. The genus Anaerolinea was dominant in the mangrove sediments and was responsible for the in situ dissipation of TBBPA. Based on redundancy analysis, there was a correlation between TBBPA, TOC, TN, C/N, pH, and microbial community structure at the genus level. Combining TBBPA, TN, and TOC may induce variations in the microbial community of mangrove sediments. Full article
(This article belongs to the Special Issue Coastal Wetland Ecosystems)
Show Figures

Figure 1

16 pages, 2203 KiB  
Article
The Opposite of Biotic Resistance: Herbivory and Competition Suppress Regeneration of Native but Not Introduced Mangroves in Southern China
by Dan Peng, Yihui Zhang, Jiayu Wang and Steven Charles Pennings
Forests 2022, 13(2), 192; https://doi.org/10.3390/f13020192 - 26 Jan 2022
Cited by 3 | Viewed by 3380
Abstract
Mangrove forests are increasingly threatened by plant invasions worldwide, but some mangrove species are invasive and threaten salt marsh and native mangrove ecosystems. The southern coast of China is invaded by the cordgrass Spartina alterniflora, and the mangrove Sonneratia apetala, providing [...] Read more.
Mangrove forests are increasingly threatened by plant invasions worldwide, but some mangrove species are invasive and threaten salt marsh and native mangrove ecosystems. The southern coast of China is invaded by the cordgrass Spartina alterniflora, and the mangrove Sonneratia apetala, providing a model system for studying the processes and mechanisms through which non-native species establish and spread. We used a transplant experiment to test the overarching hypothesis that native herbivores and plants provided biotic resistance against invasion by S. apetala, and that the importance of these factors would vary geographically. Survival of transplanted mangrove seedlings was lower in Zhangjiang Estuary (23°55′ N) than in Leizhou Bay (20°56′ N), and varied with species and habitats. S. apetala had higher survival and growth rates than native mangroves at both sites, and S. apetala grew taller than the S. alterniflora canopy at Leizhou Bay in only two growing seasons. In contrast, native mangroves grew poorly in S. alterniflora. Grazing by rodents and insects suppressed the growth and survival of Kandelia obovata and Avicennia marina in Zhangjiang Estuary and Leizhou Bay, but had little effect on S. apetala. Competition with vegetation (S. alterniflora and native mangroves) exacerbated the reduced survival of native mangroves, and these effects varied across study sites. Low survival of non-native S. apetala in vegetated habitats at Zhangjiang Estuary was likely due to a synergistic effect of low winter temperatures and low light intensity. Escape from herbivory (the opposite to biotic resistance) and fast growth may drive the quick expansion of non-native S. apetala in China. Rapid encroachment of S. apetala may transform the native mangrove forests and monospecific intertidal Spartina grasslands into non-native mangrove forests in the southern coast of China. Full article
(This article belongs to the Special Issue Advances in Mangrove Ecology)
Show Figures

Figure 1

10 pages, 2752 KiB  
Article
Seasonal Variation and Ecological Risk Assessment of Heavy Metal in an Estuarine Mangrove Wetland
by Hualong Hong, Binghuang Zhang and Haoliang Lu
Water 2021, 13(15), 2064; https://doi.org/10.3390/w13152064 - 29 Jul 2021
Cited by 17 | Viewed by 3545
Abstract
Potential toxic metal pollution in mangroves has attracted extensive attention globally; however, the seasonal variation of potential toxic metals in mangrove wetlands is still poorly understood. Herein, we investigated the variation of content as well as chemical speciation of typical metals (Pb, Cr, [...] Read more.
Potential toxic metal pollution in mangroves has attracted extensive attention globally; however, the seasonal variation of potential toxic metals in mangrove wetlands is still poorly understood. Herein, we investigated the variation of content as well as chemical speciation of typical metals (Pb, Cr, Zn and Cu) in the sediments from the Zhangjiang Estuary mangrove wetland, China. The potential risk of metal contamination was also investigated. Compared to the wet season, we found that sediment metal content was higher in the dry season. Mangrove sites show accumulated significant metals than does the mudflat both in wet and dry seasons. Geo-accumulation (Igeo) shows moderate pollution, probably because of the dilution as result of runoff and tidal hydrodynamics in the wet season. Increased concentrations of all metals in the acid-soluble fraction and decreased metal contents in the residue fraction were found in the dry season. Risk assessment indicated that the concentrations of Pb poses a higher environmental risk in the dry season. These results can increase awareness of metal pollution in the dry season and provide information for potential toxic metal management in mangrove wetlands. Full article
Show Figures

Figure 1

18 pages, 7885 KiB  
Article
Monitoring Invasion Process of Spartina alterniflora by Seasonal Sentinel-2 Imagery and an Object-Based Random Forest Classification
by Yanlin Tian, Mingming Jia, Zongming Wang, Dehua Mao, Baojia Du and Chao Wang
Remote Sens. 2020, 12(9), 1383; https://doi.org/10.3390/rs12091383 - 27 Apr 2020
Cited by 49 | Viewed by 7073
Abstract
In the late 1990s, the exotic plant Spartina alterniflora (S. alterniflora), was introduced to the Zhangjiang Estuary of China for tidal zone reclamation and protection. However, it invaded rapidly and has caused serious ecological problems. Accurate information on the seasonal invasion [...] Read more.
In the late 1990s, the exotic plant Spartina alterniflora (S. alterniflora), was introduced to the Zhangjiang Estuary of China for tidal zone reclamation and protection. However, it invaded rapidly and has caused serious ecological problems. Accurate information on the seasonal invasion of S. alterniflora is vital to understand invasion pattern and mechanism, especially at a high temporal resolution. This study aimed to explore the S. alterniflora invasion process at a seasonal scale from 2016 to 2018. However, due to the uncertainties caused by periodic inundation of local tides, accurately monitoring the spatial extent of S. alterniflora is challenging. Thus, to achieve the goal and address the challenge, we firstly built a high-quality seasonal Sentinel-2 image collection by developing a new submerged S. alterniflora index (SAI) to reduce the errors caused by high tide fluctuations. Then, an object-based random forest (RF) classification method was applied to the image collection. Finally, seasonal extents of S. alterniflora were captured. Results showed that (1) the red edge bands (bands 5, 6, and 7) of Sentinel-2 imagery played critical roles in delineating submerged S. alterniflora; (2) during March 2016 to November 2018, the extent of S. alterniflora increased from 151.7 to 270.3 ha, with an annual invasion rate of 39.5 ha; (3) S. alterniflora invaded with a rate of 31.5 ha/season during growing season and 12.1 ha/season during dormant season. To our knowledge, this is the first study monitoring S. alterniflora invasion process at a seasonal scale during continuous years, discovering that S. alterniflora also expands during dormant seasons. This discovery is of great significance for understanding the invasion pattern and mechanism of S. alterniflora and will facilitate coastal biodiversity conservation efforts. Full article
(This article belongs to the Special Issue Remote Sensing of Wetlands)
Show Figures

Graphical abstract

16 pages, 7915 KiB  
Article
Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform
by Huiying Li, Mingming Jia, Rong Zhang, Yongxing Ren and Xin Wen
Remote Sens. 2019, 11(21), 2479; https://doi.org/10.3390/rs11212479 - 24 Oct 2019
Cited by 90 | Viewed by 7882
Abstract
Information on mangrove species composition and distribution is key to studying functions of mangrove ecosystems and securing sustainable mangrove conservation. Even though remote sensing technology is developing rapidly currently, mapping mangrove forests at the species level based on freely accessible images is still [...] Read more.
Information on mangrove species composition and distribution is key to studying functions of mangrove ecosystems and securing sustainable mangrove conservation. Even though remote sensing technology is developing rapidly currently, mapping mangrove forests at the species level based on freely accessible images is still a great challenge. This study built a Sentinel-2 normalized difference vegetation index (NDVI) time series (from 2017-01-01 to 2018-12-31) to represent phenological trajectories of mangrove species and then demonstrated the feasibility of phenology-based mangrove species classification using the random forest algorithm in the Google Earth Engine platform. It was found that (i) in Zhangjiang estuary, the phenological trajectories (NDVI time series) of different mangrove species have great differences; (ii) the overall accuracy and Kappa confidence of the classification map is 84% and 0.84, respectively; and (iii) Months in late winter and early spring play critical roles in mangrove species mapping. This is the first study to use phonological signatures in discriminating mangrove species. The methodology presented can be used as a practical guideline for the mapping of mangrove or other vegetation species in other regions. However, future work should pay attention to various phenological trajectories of mangrove species in different locations. Full article
(This article belongs to the Special Issue Remote Sensing of Wetlands)
Show Figures

Graphical abstract

11 pages, 2415 KiB  
Article
Classification of Hyperspectral Images Based on Supervised Sparse Embedded Preserving Projection
by Fen Cai, Miao-Xia Guo, Li-Fang Hong and Ying-Yi Huang
Appl. Sci. 2019, 9(17), 3583; https://doi.org/10.3390/app9173583 - 2 Sep 2019
Cited by 4 | Viewed by 1903
Abstract
Dimensionality reduction is an important research area for hyperspectral remote sensing images due to the redundancy of spectral information. Sparsity preserving projection (SPP) is a dimensionality reduction (DR) algorithm based on the l1-graph, which establishes the relations of samples by sparse [...] Read more.
Dimensionality reduction is an important research area for hyperspectral remote sensing images due to the redundancy of spectral information. Sparsity preserving projection (SPP) is a dimensionality reduction (DR) algorithm based on the l1-graph, which establishes the relations of samples by sparse representation. However, SPP is an unsupervised algorithm that ignores the label information of samples and the objective function of SPP; instead, it only considers the reconstruction error, which means that the classification effect is constrained. In order to solve this problem, this paper proposes a dimensionality reduction algorithm called the supervised sparse embedded preserving projection (SSEPP) algorithm. SSEPP considers the manifold structure information of samples and makes full use of the label information available in order to enhance the discriminative ability of the projection subspace. While maintaining the sparse reconstruction error, the algorithm also minimizes the error between samples of the same class. Experiments were performed on an Indian Pines hyperspectral dataset and HJ1A-HSI remote sensing images from the Zhangjiang estuary in Southeastern China, respectively. The results show that the proposed method effectively improves its classification accuracy. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

9 pages, 1557 KiB  
Article
Multi-Feature Joint Sparse Model for the Classification of Mangrove Remote Sensing Images
by Yan-Min Luo, Yi Ouyang, Ren-Cheng Zhang and Hsuan-Ming Feng
ISPRS Int. J. Geo-Inf. 2017, 6(6), 177; https://doi.org/10.3390/ijgi6060177 - 20 Jun 2017
Cited by 15 | Viewed by 4533
Abstract
Mangroves are valuable contributors to coastal ecosystems, and remote sensing is an indispensable way to obtain knowledge of the dynamics of mangrove ecosystems. Due to the similar spectral features between mangroves and other land cover types, challenges are posed since the accuracy is [...] Read more.
Mangroves are valuable contributors to coastal ecosystems, and remote sensing is an indispensable way to obtain knowledge of the dynamics of mangrove ecosystems. Due to the similar spectral features between mangroves and other land cover types, challenges are posed since the accuracy is sometimes unsatisfactory in distinguishing mangroves from other land cover types with traditional classification methods. In this paper, we propose a classification method named the multi-feature joint sparse algorithm (MF-SRU), in which spectral, topographic, and textural features are integrated as the decision-making features, and sparse representation of both center pixels and their eight neighborhood pixels is proposed to represent the spatial correlation of neighboring pixels, which can make good use of the spatial correlation of adjacent pixels. Experiments are performed on Landsat Thematic Mapper multispectral remote sensing imagery in the Zhangjiang estuary in Southeastern China, and the results show that the proposed method can effectively improve the extraction accuracy of mangroves. Full article
(This article belongs to the Special Issue Advanced Geo-Information Technologies for Anticipatory Computing)
Show Figures

Figure 1

18 pages, 9359 KiB  
Article
Monitoring the Invasion of Spartina alterniflora Using Multi-source High-resolution Imagery in the Zhangjiang Estuary, China
by Mingyue Liu, Huiying Li, Lin Li, Weidong Man, Mingming Jia, Zongming Wang and Chunyan Lu
Remote Sens. 2017, 9(6), 539; https://doi.org/10.3390/rs9060539 - 30 May 2017
Cited by 86 | Viewed by 7774
Abstract
Spartina alterniflora (S. alterniflora) is one of the most harmful invasive plants in China. Google Earth (GE), as a free software, hosts high-resolution imagery for many areas of the world. To explore the use of GE imagery for monitoring S. alterniflora [...] Read more.
Spartina alterniflora (S. alterniflora) is one of the most harmful invasive plants in China. Google Earth (GE), as a free software, hosts high-resolution imagery for many areas of the world. To explore the use of GE imagery for monitoring S. alterniflora invasion and developing an understanding of the invasion process of S. alterniflora in the Zhangjiang Estuary, the object-oriented method and visual interpretation were applied to GE, SPOT-5, and Gaofen-1 (GF-1) images. In addition, landscape metrics of S. alterniflora patches adjacent to mangrove forests were calculated and mangrove gaps were recorded by checking whether S. alterniflora exists. The results showed that from 2003–2015, the areal extent of S. alterniflora in the Zhangjiang Estuary increased from 57.94 ha to 116.11 ha, which was mainly converted from mudflats and moved seaward significantly. Analyses of the S. alterniflora expansion patterns in the six subzones indicated that the expansion trends varied with different environmental circumstances and human activities. Land reclamation, mangrove replantation, and mudflat aquaculture caused significant losses of S. alterniflora. The number of invaded gaps increased and S. alterniflora patches adjacent to mangrove forests became much larger and more aggregated during 2003–2015 (the class area increased from 12.13 ha to 49.76 ha and the aggregation index increased from 91.15 to 94.65). We thus concluded that S. alterniflora invasion in the Zhangjiang Estuary had seriously increased and that measures should be taken considering the characteristics shown in different subzones. This study provides an example of applying GE imagery to monitor invasive plants and illustrates that this approach can aid in the development of governmental policies employed to control S. alterniflora invasion. Full article
Show Figures

Graphical abstract

12 pages, 1427 KiB  
Article
Nutrient Resorption and Phenolics Concentration Associated with Leaf Senescence of the Subtropical Mangrove Aegiceras corniculatum: Implications for Nutrient Conservation
by Hui Chen, Benbo Xu, Shudong Wei, Lihua Zhang, Haichao Zhou and Yiming Lin
Forests 2016, 7(11), 290; https://doi.org/10.3390/f7110290 - 22 Nov 2016
Cited by 9 | Viewed by 5649
Abstract
Aegiceras corniculatum (L.) Blanco, a mangrove shrub species in the Myrsine family, often grows at the seaward edge of the mangrove zone in China. In the present study, seasonal dynamics of nutrient resorption and phenolics concentration associated with leaf senescence of A. corniculatum [...] Read more.
Aegiceras corniculatum (L.) Blanco, a mangrove shrub species in the Myrsine family, often grows at the seaward edge of the mangrove zone in China. In the present study, seasonal dynamics of nutrient resorption and phenolics concentration associated with leaf senescence of A. corniculatum were investigated in order to evaluate its possible nutrient conservation strategies in the subtropical Zhangjiang river estuary. It was found that the nitrogen (N) and phosphorus (P) concentrations in mature leaves showed similar seasonal changes with the highest concentrations in winter and the lowest in summer, and were significantly higher than those in senescent leaves. The N:P ratios of mature leaves through the year were found to be less than 14, indicating that the A. corniculatum forest was N-limited. The nitrogen resorption efficiency (NRE) was higher than phosphorus resorption efficiency (PRE), and N resorption was complete. In addition, A. corniculatum leaves contained high total phenolics (TPs) and total condensed tannin (TCT) levels (both above 20%). TPs concentrations in mature and senescent leaves were all inversely related to their N or P concentrations. TPs:N and TCT:N ratios in senescent leaves were significantly higher than those in mature leaves. The obtained results suggested that high NRE during leaf senescence and high TPs:N and TCT:N ratios in senescent leaves might be important nutrient conservation strategies for the mangrove shrub A. corniculatum forest growing in N-limited conditions. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

Back to TopTop