Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Zhalong and Momoge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10356 KB  
Article
A Novel Workflow for Seasonal Wetland Identification Using Bi-Weekly Multiple Remote Sensing Data
by Liwei Xing, Zhenguo Niu, Cuicui Jiao, Jing Zhang, Shuqing Han, Guodong Cheng and Jianzhai Wu
Remote Sens. 2022, 14(4), 1037; https://doi.org/10.3390/rs14041037 - 21 Feb 2022
Cited by 14 | Viewed by 4016
Abstract
Accurate wetland mapping is essential for their protection and management; however, it is difficult to accurately identify seasonal wetlands because of irregular rainfall and the potential lack of water inundation. In this study, we propose a novel method to generate reliable seasonal wetland [...] Read more.
Accurate wetland mapping is essential for their protection and management; however, it is difficult to accurately identify seasonal wetlands because of irregular rainfall and the potential lack of water inundation. In this study, we propose a novel method to generate reliable seasonal wetland maps with a spatial resolution of 20 m using a seasonal-rule-based method in the Zhalong and Momoge National Nature Reserves. This study used Sentinel-1 and Sentinel-2 data, along with a bi-weekly composition method to generate a 15-day image time series. The random forest algorithm was used to classify the images into vegetation, waterbodies, bare land, and wet bare land during each time period. Several rules were incorporated based on the intra-annual changes in the seasonal wetlands and annual wetland maps of the study regions were generated. Validation processes showed that the overall accuracy and kappa coefficient were above 89.8% and 0.87, respectively. The seasonal-rule-based method was able to identify seasonal marshes, flooded wetlands, and artificial wetlands (e.g., paddy fields). Zonal analysis indicated that seasonal wetland types, including flooded wetlands and seasonal marshes, accounted for over 50% of the total wetland area in both Zhalong and Momoge National Nature Reserves; and permanent wetlands, including permanent water and permanent marsh, only accounted for 11% and 12% in the two reserves, respectively. This study proposes a new method to generate reliable annual wetland maps that include seasonal wetlands, providing an accurate dataset for interannual change analyses and wetland protection decision-making. Full article
(This article belongs to the Special Issue Remote Sensing of Wetlands and Biodiversity)
Show Figures

Figure 1

17 pages, 4416 KB  
Article
Human Activities and Climate Variability Affecting Inland Water Surface Area in a High Latitude River Basin
by Liwen Chen, Guangxin Zhang, Y. Jun Xu, Shengbo Chen, Yanfeng Wu, Zongting Gao and Haiyang Yu
Water 2020, 12(2), 382; https://doi.org/10.3390/w12020382 - 31 Jan 2020
Cited by 24 | Viewed by 4791
Abstract
Spatiotemporal changes in the surface area of inland water bodies have important implications in regional water resources, flood control, and drought hazard prediction. Although inland water bodies have been investigated intensively, few studies have looked at the effect of human activities and climate [...] Read more.
Spatiotemporal changes in the surface area of inland water bodies have important implications in regional water resources, flood control, and drought hazard prediction. Although inland water bodies have been investigated intensively, few studies have looked at the effect of human activities and climate variability on surface area of inland waters at a larger scale over time and space. In this study, we used MODIS (MOD13Q1) images to determine water surface area extent at 250 m spatial resolution. We then applied this algorithm with MOD13Q1 images taken at 16-day intervals from 2000 to 2018 to a large river basin in China’s northeast high latitude region with dense stream network and abundant wetlands to investigate spatiotemporal distribution and dynamics of inland water bodies. The study identified 209 ponds, lakes, and reservoirs with an average total surface area of 2080 km2 in the past 19 years. The total water surface area fluctuated largely from 942 km2 to 5169 km2, corresponding to rainfall intensity and flood. We found that the total water surface area in this high latitude river basin showed an increasing trend during the study period, while the annual precipitation amount in the river basin also had an increasing trend concurrently. Precipitation and irrigation significantly contributed to the monthly change of water surface area, which reached the highest during June and August. The increase of water surface area was significant in the lower basin floodplain region, where agricultural irrigation using groundwater for rice production has progressed. Four nationally important wetland preserves (Zhalong, Xianghai, Momoge, and Chagan Lake) in the river basin made up nearly 50% of the basin’s total water surface area, of which Zhalong, Xianghai, and Momoge are designated by The Ramsar Convention as wetland sites of international importance. Seasonally, these water bodies reached their maximal surface area in August, when both the monsoon weather and agricultural discharge prevailed. This study demonstrates that water surface area in a high latitude river basin is affected by both human activities and climate variation, implying that high latitude regions will likely experience more changes in surface water distribution as global climate change continues and agriculture becomes intensified. Full article
(This article belongs to the Special Issue Wetland Ecohydrology and Water Resource Management)
Show Figures

Figure 1

Back to TopTop