Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = X-ray microtomography (XMCT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11257 KiB  
Article
Cell-Molecular Interactions of Nano- and Microparticles in Dental Implantology
by Varvara Labis, Ernest Bazikyan, Denis Demin, Irina Dyachkova, Denis Zolotov, Alexey Volkov, Victor Asadchikov, Olga Zhigalina, Dmitry Khmelenin, Daria Kuptsova, Svetlana Petrichuk, Elena Semikina, Svetlana Sizova, Vladimir Oleinikov, Sergey Khaidukov and Ivan Kozlov
Int. J. Mol. Sci. 2023, 24(3), 2267; https://doi.org/10.3390/ijms24032267 - 23 Jan 2023
Cited by 4 | Viewed by 2198
Abstract
The role of metallic nano- and microparticles in the development of inflammation has not yet been investigated. Soft tissue biopsy specimens of the bone bed taken during surgical revisions, as well as supernatants obtained from the surface of the orthopedic structures and dental [...] Read more.
The role of metallic nano- and microparticles in the development of inflammation has not yet been investigated. Soft tissue biopsy specimens of the bone bed taken during surgical revisions, as well as supernatants obtained from the surface of the orthopedic structures and dental implants (control), were examined. Investigations were performed using X-ray microtomography, X-ray fluorescence analysis, and scanning electron microscopy. Histological studies of the bone bed tissues were performed. Nanoscale and microscale metallic particles were identified as participants in the inflammatory process in tissues. Supernatants containing nanoscale particles were obtained from the surfaces of 20 units of new dental implants. Early and late apoptosis and necrosis of immunocompetent cells after co-culture and induction by lipopolysaccharide and human venous blood serum were studied in an experiment with staging on the THP-1 (human monocytic) cell line using visualizing cytometry. As a result, it was found that nano- and microparticles emitted from the surface of the oxide layer of medical devices impregnated soft tissue biopsy specimens. By using different methods to analyze the cell–molecule interactions of nano- and microparticles both from a clinical perspective and an experimental research perspective, the possibility of forming a chronic immunopathological endogenous inflammatory process with an autoimmune component in the tissues was revealed. Full article
(This article belongs to the Special Issue Advances in Nanoparticle-Based Therapeutics)
Show Figures

Figure 1

16 pages, 4979 KiB  
Article
Immunopathological Inflammation in the Evolution of Mucositis and Peri-Implantitis
by Varvara Labis, Ernest Bazikyan, Svetlana Sizova, Vladimir Oleinikov, Andrey Trulioff, Maria Serebriakova, Igor Kudryavtsev, Olga Zhigalina, Dmitry Khmelenin, Irina Dyachkova, Denis Zolotov, Victor Asadchikov, Alexey Volkov, Sergey Khaidukov and Ivan Kozlov
Int. J. Mol. Sci. 2022, 23(24), 15797; https://doi.org/10.3390/ijms232415797 - 13 Dec 2022
Cited by 6 | Viewed by 2103
Abstract
The purpose of this study was to provide an immuno-mediated substantiation of the etiopathogenesis of mucositis and peri-implantitis based on the results of experimental, laboratory and clinical studies. The biopsy material was studied to identify impregnated nanoscale and microscale particles in the structure [...] Read more.
The purpose of this study was to provide an immuno-mediated substantiation of the etiopathogenesis of mucositis and peri-implantitis based on the results of experimental, laboratory and clinical studies. The biopsy material was studied to identify impregnated nanoscale and microscale particles in the structure of pathological tissues by using X-ray microtomography and X-ray fluorescence analyses. Electron microscopy with energy-dispersive analysis identified the composition of supernatants containing nanoscale metal particles obtained from the surfaces of dental implants. The parameters of the nanoscale particles were determined by dynamic light scattering. Flow cytometry was used to study the effect of nanoscale particles on the ability to induce the activation and apoptosis of immunocompetent cells depending on the particles’ concentrations during cultivation with the monocytic cell line THP-1 with the addition of inductors. An analysis of the laboratory results suggested the presence of dose-dependent activation, as well as early and late apoptosis of the immunocompetent cells. Activation and early and late apoptosis of a monocytic cell line when THP-1 was co-cultured with nanoscale metal particles in supernatants were shown for the first time. When human venous blood plasma was added, both activation and early and late apoptosis had a dose-dependent effect and differed from those of the control groups. Full article
Show Figures

Figure 1

Back to TopTop