Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Wytham Woods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 14277 KiB  
Article
Validation and Conformity Testing of Sentinel-3 Green Instantaneous FAPAR and Canopy Chlorophyll Content Products
by Fernando Camacho, Enrique Martínez-Sánchez, Luke A. Brown, Harry Morris, Rosalinda Morrone, Owen Williams, Jadunandan Dash, Niall Origo, Jorge Sánchez-Zapero and Valentina Boccia
Remote Sens. 2024, 16(15), 2698; https://doi.org/10.3390/rs16152698 - 23 Jul 2024
Cited by 2 | Viewed by 1487
Abstract
This article presents validation and conformity testing of the Sentinel-3 Ocean Land Colour Instrument (OLCI) green instantaneous fraction of absorbed photosynthetically active radiation (FAPAR) and OLCI terrestrial chlorophyll index (OTCI) canopy chlorophyll content (CCC) products with fiducial reference measurements (FRM) collected in 2018 [...] Read more.
This article presents validation and conformity testing of the Sentinel-3 Ocean Land Colour Instrument (OLCI) green instantaneous fraction of absorbed photosynthetically active radiation (FAPAR) and OLCI terrestrial chlorophyll index (OTCI) canopy chlorophyll content (CCC) products with fiducial reference measurements (FRM) collected in 2018 and 2021 over two sites (Las Tiesas—Barrax, Spain, and Wytham Woods, UK) in the context of the European Space Agency (ESA) Fiducial Reference Measurement for Vegetation (FRM4Veg) initiative. Following metrological principles, an end-to-end uncertainty evaluation framework developed in the project is used to account for the uncertainty of reference data based on a two-stage validation approach. The process involves quantifying uncertainties at the elementary sampling unit (ESU) level and incorporating these uncertainties in the upscaling procedures using orthogonal distance regression (ODR) between FRM and vegetation indices derived from Sentinel-2 data. Uncertainties in the Sentinel-2 data are also accounted for. FRM-based high spatial resolution reference maps and their uncertainties were aggregated to OLCI’s native spatial resolution using its apparent point spread function (PSF). The Sentinel-3 mission requirements, which give an uncertainty of 5% (goal) and 10% (threshold), were considered for conformity testing. GIFAPAR validation results revealed correlations > 0.95, RMSD ~0.1, and a slight negative bias (~−0.06) for both sites. This bias could be partly explained by the differences in the FAPAR definitions between the satellite product and the FRM-based reference. For the OTCI-based CCC, leave-one-out cross-validation demonstrated correlations > 0.8 and RMSDcv ~0.28 g·m−2. Despite the encouraging validation results, conclusive conformity with the strict mission requirements was low, with most cases providing inconclusive results (driven by large uncertainties in the satellite products as well as by the uncertainties in the upscaling approach). It is recommended that mission requirements for bio-geophysical products are reviewed, at least at the threshold level. It is also suggested that the large uncertainties associated with the two-stage validation approach may be avoided by directly comparing with spatially representative FRM. Full article
Show Figures

Figure 1

26 pages, 9121 KiB  
Article
Fiducial Reference Measurements for Vegetation Bio-Geophysical Variables: An End-to-End Uncertainty Evaluation Framework
by Luke A. Brown, Fernando Camacho, Vicente García-Santos, Niall Origo, Beatriz Fuster, Harry Morris, Julio Pastor-Guzman, Jorge Sánchez-Zapero, Rosalinda Morrone, James Ryder, Joanne Nightingale, Valentina Boccia and Jadunandan Dash
Remote Sens. 2021, 13(16), 3194; https://doi.org/10.3390/rs13163194 - 12 Aug 2021
Cited by 31 | Viewed by 4869
Abstract
With a wide range of satellite-derived vegetation bio-geophysical products now available to users, validation efforts are required to assess their accuracy and fitness for purpose. Substantial progress in the validation of such products has been made over the last two decades, but quantification [...] Read more.
With a wide range of satellite-derived vegetation bio-geophysical products now available to users, validation efforts are required to assess their accuracy and fitness for purpose. Substantial progress in the validation of such products has been made over the last two decades, but quantification of the uncertainties associated with in situ reference measurements is rarely performed, and the incorporation of uncertainties within upscaling procedures is cursory at best. Since current validation practices assume that reference data represent the truth, our ability to reliably demonstrate compliance with product uncertainty requirements through conformity testing is limited. The Fiducial Reference Measurements for Vegetation (FRM4VEG) project, initiated by the European Space Agency, is aiming to address this challenge by applying metrological principles to vegetation and surface reflectance product validation. Following FRM principles, and in accordance with the International Standards Organisation’s (ISO) Guide to the Expression of Uncertainty in Measurement (GUM), for the first time, we describe an end-to-end uncertainty evaluation framework for reference data of two key vegetation bio-geophysical variables: the fraction of absorbed photosynthetically active radiation (FAPAR) and canopy chlorophyll content (CCC). The process involves quantifying the uncertainties associated with individual in situ reference measurements and incorporating these uncertainties within the upscaling procedure (as well as those associated with the high-spatial-resolution imagery used for upscaling). The framework was demonstrated in two field campaigns covering agricultural crops (Las Tiesas–Barrax, Spain) and deciduous broadleaf forest (Wytham Woods, UK). Providing high-spatial-resolution reference maps with per-pixel uncertainty estimates, the framework is applicable to a range of other bio-geophysical variables including leaf area index (LAI), the fraction of vegetation cover (FCOVER), and canopy water content (CWC). The proposed procedures will facilitate conformity testing of moderate spatial resolution vegetation bio-geophysical products in future validation exercises. Full article
(This article belongs to the Special Issue Recent Advances in Satellite Derived Global Land Product Validation)
Show Figures

Figure 1

13 pages, 1664 KiB  
Article
Effect of Tree Density on Seed Production and Dispersal of Birch (Betula pendula Roth and Betula pubescens Ehrhs)
by Zetian Liu and Matthew Evans
Forests 2021, 12(7), 929; https://doi.org/10.3390/f12070929 - 16 Jul 2021
Cited by 8 | Viewed by 2999
Abstract
Silver and downy birch (Betula pendula Roth and B. pubescens Ehrhs) are pioneer species which play an important role in forest regeneration in disturbed areas. Knowledge of birch seed production and dispersal is key to making good predictions of the persistence and [...] Read more.
Silver and downy birch (Betula pendula Roth and B. pubescens Ehrhs) are pioneer species which play an important role in forest regeneration in disturbed areas. Knowledge of birch seed production and dispersal is key to making good predictions of the persistence and colonization of birch. Both processes can be affected by the density of trees in the neighbourhood. In this study, we studied the seed production and dispersal of birch trees in two plots in Wytham Woods, UK, in 2015, and investigated the potential effect of neighbourhood tree density. We applied inverse modelling to seed trap data, incorporating tree density around the source tree and on the seed path to estimate birch fecundity and the dispersal kernel of the seeds. We show that the pattern of dispersed seeds was best explained by a model that included an effect of tree density on seed dispersal. There was no strong evidence that conspecific or heterospecific tree density had an effect on birch fecundity in Wytham Woods. A birch with diameter at breast height (DBH) of 20 cm is estimated to have produced ~137,000 seeds in 2015. Mean dispersal distance in an open area is estimated to be 65 m but would be reduced to 38 m in a closed stand. Both the mean dispersal distance and the probability of long-distance dispersal of birch decreases in dense environments. Areas with higher tree density also would intercept more seeds. These results highlight the importance of considering tree density in the neighbourhood and in the overall landscape when predicting the colonization and recruitment of birch. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 13769 KiB  
Article
Realistic Forest Stand Reconstruction from Terrestrial LiDAR for Radiative Transfer Modelling
by Kim Calders, Niall Origo, Andrew Burt, Mathias Disney, Joanne Nightingale, Pasi Raumonen, Markku Åkerblom, Yadvinder Malhi and Philip Lewis
Remote Sens. 2018, 10(6), 933; https://doi.org/10.3390/rs10060933 - 13 Jun 2018
Cited by 130 | Viewed by 15559
Abstract
Forest biophysical variables derived from remote sensing observations are vital for climate research. The combination of structurally and radiometrically accurate 3D “virtual” forests with radiative transfer (RT) models creates a powerful tool to facilitate the calibration and validation of remote sensing data and [...] Read more.
Forest biophysical variables derived from remote sensing observations are vital for climate research. The combination of structurally and radiometrically accurate 3D “virtual” forests with radiative transfer (RT) models creates a powerful tool to facilitate the calibration and validation of remote sensing data and derived biophysical products by helping us understand the assumptions made in data processing algorithms. We present a workflow that uses highly detailed 3D terrestrial laser scanning (TLS) data to generate virtual forests for RT model simulations. Our approach to forest stand reconstruction from a co-registered point cloud is unique as it models each tree individually. Our approach follows three steps: (1) tree segmentation; (2) tree structure modelling and (3) leaf addition. To demonstrate this approach, we present the measurement and construction of a one hectare model of the deciduous forest in Wytham Woods (Oxford, UK). The model contains 559 individual trees. We matched the TLS data with traditional census data to determine the species of each individual tree and allocate species-specific radiometric properties. Our modelling framework is generic, highly transferable and adjustable to data collected with other TLS instruments and different ecosystems. The Wytham Woods virtual forest is made publicly available through an online repository. Full article
(This article belongs to the Special Issue Radiative Transfer Modelling and Applications in Remote Sensing)
Show Figures

Graphical abstract

22 pages, 3595 KiB  
Article
Airborne S-Band SAR for Forest Biophysical Retrieval in Temperate Mixed Forests of the UK
by Ramesh K. Ningthoujam, Heiko Balzter, Kevin Tansey, Keith Morrison, Sarah C.M. Johnson, France Gerard, Charles George, Yadvinder Malhi, Geoff Burbidge, Sam Doody, Nick Veck, Gary M. Llewellyn, Thomas Blythe, Pedro Rodriguez-Veiga, Sybrand Van Beijma, Bernard Spies, Chloe Barnes, Marc Padilla-Parellada, James E.M. Wheeler, Valentin Louis, Tom Potter, Alexander Edwards-Smith and Jaime Polo Bermejoadd Show full author list remove Hide full author list
Remote Sens. 2016, 8(7), 609; https://doi.org/10.3390/rs8070609 - 20 Jul 2016
Cited by 32 | Viewed by 12094
Abstract
Radar backscatter from forest canopies is related to forest cover, canopy structure and aboveground biomass (AGB). The S-band frequency (3.1–3.3 GHz) lies between the longer L-band (1–2 GHz) and the shorter C-band (5–6 GHz) and has been insufficiently studied for forest applications due [...] Read more.
Radar backscatter from forest canopies is related to forest cover, canopy structure and aboveground biomass (AGB). The S-band frequency (3.1–3.3 GHz) lies between the longer L-band (1–2 GHz) and the shorter C-band (5–6 GHz) and has been insufficiently studied for forest applications due to limited data availability. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest biophysical properties. To understand the scattering mechanisms in forest canopies at S-band the Michigan Microwave Canopy Scattering (MIMICS-I) radiative transfer model was used. S-band backscatter was found to have high sensitivity to the forest canopy characteristics across all polarisations and incidence angles. This sensitivity originates from ground/trunk interaction as the dominant scattering mechanism related to broadleaved species for co-polarised mode and specific incidence angles. The study was carried out in the temperate mixed forest at Savernake Forest and Wytham Woods in southern England, where airborne S-band SAR imagery and field data are available from the recent AirSAR campaign. Field data from the test sites revealed wide ranges of forest parameters, including average canopy height (6–23 m), diameter at breast-height (7–42 cm), basal area (0.2–56 m2/ha), stem density (20–350 trees/ha) and woody biomass density (31–520 t/ha). S-band backscatter-biomass relationships suggest increasing backscatter sensitivity to forest AGB with least error between 90.63 and 99.39 t/ha and coefficient of determination (r2) between 0.42 and 0.47 for the co-polarised channel at 0.25 ha resolution. The conclusion is that S-band SAR data such as from NovaSAR-S is suitable for monitoring forest aboveground biomass less than 100 t/ha at 25 m resolution in low to medium incidence angle range. Full article
(This article belongs to the Special Issue Remote Sensing of Vegetation Structure and Dynamics)
Show Figures

Graphical abstract

Back to TopTop