Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = Wortmannin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3493 KiB  
Article
Molecular Mechanisms of Aminoglycoside-Induced Ototoxicity in Murine Auditory Cells: Implications for Otoprotective Drug Development
by Cheng-Yu Hsieh, Jia-Ni Lin, Yi-Fan Chou, Chuan-Jen Hsu, Peir-Rong Chen, Yu-Hsuan Wen, Chen-Chi Wu and Chuan-Hung Sun
Int. J. Mol. Sci. 2025, 26(14), 6720; https://doi.org/10.3390/ijms26146720 - 13 Jul 2025
Viewed by 347
Abstract
Aminoglycoside antibiotics are critical in clinical use for treating severe infections, but they can occasionally cause irreversible sensorineural hearing loss. To establish a rational pathway for otoprotectant discovery, we provide an integrated, three-tier methodology—comprising cell-model selection, transcriptomic analysis, and a gentamicin–Texas Red (GTTR) [...] Read more.
Aminoglycoside antibiotics are critical in clinical use for treating severe infections, but they can occasionally cause irreversible sensorineural hearing loss. To establish a rational pathway for otoprotectant discovery, we provide an integrated, three-tier methodology—comprising cell-model selection, transcriptomic analysis, and a gentamicin–Texas Red (GTTR) uptake assay—to guide the development of otoprotective strategies. We first utilized two murine auditory cell lines—UB/OC-2 and HEI-OC1. We focused on TMC1 and OCT2 and further explored the underlying mechanisms of ototoxicity. UB/OC-2 exhibited a higher sensitivity to gentamicin, which correlated with elevated OCT2 expression confirmed via RT-PCR and Western blot. Transcriptomic analysis revealed upregulation of PI3K-Akt, calcium, and GPCR-related stress pathways in gentamicin-treated HEI-OC1 cells. Protein-level analysis further confirmed that gentamicin suppressed phosphorylated Akt while upregulating ER stress markers (GRP78, CHOP) and apoptotic proteins (cleaved caspase 3, PARP). Co-treatment with PI3K inhibitors (LY294002, wortmannin) further suppressed Akt phosphorylation, supporting the role of PI3K-Akt signaling in auditory cells. To visualize drug entry, we used GTTR to evaluate its applicability as a fluorescence-based uptake assay in these cell lines, which were previously employed mainly in cochlear explants. Sodium thiosulfate (STS) and N-acetylcysteine (NAC) significantly decreased GTTR uptake, suggesting a protective effect against gentamicin-induced hair cell damage. In conclusion, our findings showed a complex ototoxic cascade involving OCT2- and TMC1-mediated drug uptake, calcium imbalance, ER stress, and disruption of PI3K-Akt survival signaling. We believe that UB/OC-2 cells serve as a practical in vitro model for mechanistic investigations and screening of otoprotective compounds. Additionally, GTTR may be a simple, effective method for evaluating protective interventions in auditory cell lines. Overall, this study provides molecular-level insights into aminoglycoside-induced ototoxicity and introduces a platform for protective strategies. Full article
(This article belongs to the Special Issue Hearing Loss: Molecular Biological Insights)
Show Figures

Figure 1

24 pages, 3521 KiB  
Article
Ursolic Acid Suppresses Colorectal Cancer Through Autophagy–Lysosomal Degradation of β-Catenin
by Chung-Ming Lin, Min-Chih Chao, Hsin-Han Chen and Hui-Jye Chen
Int. J. Mol. Sci. 2025, 26(13), 6210; https://doi.org/10.3390/ijms26136210 - 27 Jun 2025
Viewed by 418
Abstract
Colorectal cancer remains a leading malignancy. As the aberrant activation of Wnt/β-catenin signaling causes colorectal cancer, Wnt/β-catenin signaling inhibitors are potential candidates for colorectal cancer treatment. Our drug screening platform identified ursolic acid (UA), a triterpenoid with various biological activities, as a potential [...] Read more.
Colorectal cancer remains a leading malignancy. As the aberrant activation of Wnt/β-catenin signaling causes colorectal cancer, Wnt/β-catenin signaling inhibitors are potential candidates for colorectal cancer treatment. Our drug screening platform identified ursolic acid (UA), a triterpenoid with various biological activities, as a potential anticancer drug because it inhibits the T-cell factor (TCF)/β-catenin-mediated transcriptional activity. Here, we discovered that UA inhibited Wnt signaling by reducing the Wnt reporter activity and Wnt target gene expression, leading to a delay in cell cycle progression and the suppression of cell proliferation. Stepwise epistatic analyses suggested that UA functions on β-catenin protein stability in Wnt signaling. Further studies revealed that UA reduced β-catenin protein levels by Western blotting and immunofluorescent staining and induced autophagy by microtubule-associated protein 1 light chain 3 beta (LC3B) punctate staining. The cotreatment with UA and the autophagy inhibitors chloroquine and wortmannin recovered the β-catenin protein levels. Therefore, UA was confirmed to induce β-catenin degradation by the autophagy–lysosomal degradation system through inhibition in the phosphatidylinositol 3-kinase (PI3K)/Ak strain transforming (protein kinase B; AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Our results not only highlight the potential of UA in Wnt-driven colorectal cancer therapy but also provide a workable Wnt signaling termination approach for the treatment of other Wnt-related diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Graphical abstract

20 pages, 5381 KiB  
Article
Role of Central Inflammatory and Oxidative Pathways in the Morphine Exacerbation of Cardiovascular Effects of Sepsis in Rats
by Mohamed Abdelnaby, Marwa Y. Sallam, Mai M. Helmy, Hanan M. El-Gowelli and Mahmoud M. El-Mas
Pharmaceuticals 2025, 18(6), 882; https://doi.org/10.3390/ph18060882 - 12 Jun 2025
Viewed by 605
Abstract
Background/Objectives: Sepsis remains one of the most serious and possibly fatal complications encountered in intensive care units. Considering the frequent use of narcotic analgesics in this setting, we investigated whether the cardiovascular and peripheral and central inflammatory features of sepsis could be modified [...] Read more.
Background/Objectives: Sepsis remains one of the most serious and possibly fatal complications encountered in intensive care units. Considering the frequent use of narcotic analgesics in this setting, we investigated whether the cardiovascular and peripheral and central inflammatory features of sepsis could be modified by morphine. Methods: Rats were instrumented with femoral and intracisternal (i.c.) indwelling catheters and sepsis was induced by cecal ligation and puncture (CLP). Results: The i.v. administration of morphine (3 and 10 mg/kg) significantly and dose-dependently aggravated septic manifestations of hypotension and impaired cardiac autonomic activity, as reflected by the reductions in indices of heart rate variability (HRV). Cardiac contractility (dP/dtmax) was also reduced by morphine in septic rats. The morphine effects were mostly eliminated following (i) blockade of μ-opioid receptors by i.v. naloxone and (ii) inhibition of central PI3K, MAPK-ERK, MAPK-JNK, NADPH oxidase (NADPHox), or Rho-kinase (ROCK) by i.c. wortmannin, PD98059, SP600125, diphenyleneiodonium, and fasudil, respectively. Further, these pharmacologic interventions significantly reduced the heightened protein expression of toll-like receptor 4 (TLR4) and monocyte chemoattractant protein-1 (MCP1) in brainstem rostral ventrolateral medullary (RVLM), but not cardiac, tissues of CLP/morphine-treated rats. Conclusions: Morphine worsens cardiovascular and autonomic disturbances caused by sepsis through a mechanism mediated via μ-opioid receptors and upregulated central inflammatory, chemotactic, and oxidative signals. Clinical studies are warranted to re-affirm the adverse cardiovascular interaction between opioids and the septic challenge. Full article
(This article belongs to the Special Issue Pharmacology and Toxicology of Opioids)
Show Figures

Graphical abstract

15 pages, 3066 KiB  
Article
Vasodilatory Effect of n-Butanol Extract from Sanguisorba officinalis L. and Its Mechanism
by Hangyu Jin, Jiaze Li, Shuyuan Wang, Enyi Jin, Jun Zhe Min, Gao Li, Yun Jung Lee and Lihua Cao
Plants 2025, 14(7), 1095; https://doi.org/10.3390/plants14071095 - 1 Apr 2025
Viewed by 573
Abstract
The dried root of Sanguisorba officinalis L. (commonly known as Diyu) has been studied for its various pharmacological effects, including its antibacterial, antitumor, antioxidant, and anti-inflammatory activities. In the present study, primary cultured vascular endothelial cells (HUVECs) and isolated phenylephrine-precontracted rat thoracic aortic [...] Read more.
The dried root of Sanguisorba officinalis L. (commonly known as Diyu) has been studied for its various pharmacological effects, including its antibacterial, antitumor, antioxidant, and anti-inflammatory activities. In the present study, primary cultured vascular endothelial cells (HUVECs) and isolated phenylephrine-precontracted rat thoracic aortic rings were examined to investigate the possible mechanism of a butanol extract of Diyu (BSO) in its vascular relaxant effect. HUVECs treated with BSO produced a significantly higher amount of nitric oxide (NO) compared to the control. However, its production was inhibited by pretreatment with NG-nitro-L-arginine methylester (L-NAME) or wortmannin. BSO also increased the phosphorylation levels of endothelial nitric oxide synthase (eNOS) and Akt. In the aortic ring, BSO relaxed PE-precontracted rat thoracic aortic rings in a concentration-dependent manner. The absence of the vascular endothelium significantly attenuated BSO-induced vasorelaxation. The non-selective NOS inhibitor, L-NAME, and the selective inhibitor of soluble guanylyl cyclase (sGC), 1H-[1,2,4]-oxadiazolo-[4,3-α]-quinoxalin-1-one (ODQ), dramatically inhibited the BSO-induced relaxation effect of the endothelium-intact aortic ring. Ca2+-free buffer and intracellular Ca2+ homeostasis regulators (TG, Gd3+, and 2–APB) inhibited BSO-induced vasorelaxation. In Ca2+-free Krebs solution, BSO markedly reduced PE-induced contraction. Vasodilation induced by BSO was significantly inhibited by wortmannin, an inhibitor of Akt. Pretreatment with the non-selective inhibitor of Ca2+-activated K+ channels (KCa), tetraethylammonium (TEA), significantly attenuated the BSO-induced vasorelaxant effect. Furthermore, BSO decreased the systolic blood pressure and heart rate in a concentration-dependent manner in rats. In conclusion, BSO induces vasorelaxation via endothelium-dependent signaling, primarily through the activation of the PI3K-Akt-eNOS-NO signaling pathway in endothelial cells, and the activation of the NO-sGC-cGMP-K⁺ channels pathway in vascular smooth muscle cells. Additionally, store-operated Ca2+ entry (SOCE)-eNOS pathways and the inhibition of Ca2⁺ mobilization from intracellular stores contribute to BSO-induced vasorelaxation. Full article
(This article belongs to the Special Issue Ethnobotanical and Pharmacological Study of Medicinal Plants)
Show Figures

Figure 1

20 pages, 4681 KiB  
Article
The Cholinergic Amelioration of Sepsis-Induced Baroreflex Dysfunction and Brainstem Inflammation Is Negated by Central Adenosine A3 Receptors
by Amany E. El-Naggar, Mai M. Helmy, Sahar M. El-Gowilly and Mahmoud M. El-Mas
Pharmaceuticals 2025, 18(3), 388; https://doi.org/10.3390/ph18030388 - 9 Mar 2025
Viewed by 1003
Abstract
Background/Objectives: Sepsis has been shown to depress arterial baroreceptor function, and this effect is counterbalanced by the cholinergic anti-inflammatory pathway. Considering the importance of central adenosine receptors in baroreceptor function, this study tested whether central adenosine A3 receptors (A3ARs) modulate the cholinergic-baroreflex [...] Read more.
Background/Objectives: Sepsis has been shown to depress arterial baroreceptor function, and this effect is counterbalanced by the cholinergic anti-inflammatory pathway. Considering the importance of central adenosine receptors in baroreceptor function, this study tested whether central adenosine A3 receptors (A3ARs) modulate the cholinergic-baroreflex interaction in sepsis and whether this interaction is modulated by mitogen-activated protein kinases (MAPKs) and related proinflammatory cytokines. Methods: Sepsis was induced by cecal ligation and puncture (CLP) and rats were instrumented with femoral and intracisternal (i.c.) catheters. Baroreflex sensitivity (BRS) was measured 24 h later in conscious animals using the vasoactive method, which correlates changes in blood pressure caused by i.v. phenylephrine (PE) and sodium nitroprusside (SNP) to concomitant reciprocal changes in heart rate. Results: The reduction in reflex bradycardic (BRS-PE), but not tachycardic (BRS-SNP), responses elicited by CLP was reversed by i.v. nicotine in a dose-related manner. The BRS-PE effect of nicotine was blunted following intracisternal administration of IB-MECA (A3AR agonist, 4 µg/rat). The depressant action of IB-MECA on the BRS facilitatory action of nicotine was abrogated following central inhibition of MAPK-JNK (SP 600125), PI3K (wortmannin), and TNFα (infliximab), but not MAPK-ERK (PD 98059). Additionally, the nicotine suppression of sepsis-induced upregulation of NFκB and NOX2 expression in the nucleus tractus solitarius (NTS) was negated by A3AR activation. The molecular effect of IB-MECA on NFκB expression disappeared in the presence of SP 600125, wortmannin, or infliximab. Conclusions: The central PI3K/MAPK-JNK/TNFα pathway contributes to the restraining action of A3ARs on cholinergic amelioration of sepsis-induced central neuroinflammatory responses and impairment of the baroreceptor-mediated negative chronotropism. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 3034 KiB  
Article
HERC1 E3 Ubiquitin Ligase Is Necessary for Autophagy Processes and for the Maintenance and Homeostasis of Vesicles in Motor Nerve Terminals, but Not for Proteasomal Activity
by Miguel Ángel Pérez-Castro, Francisco Hernández-Rasco, Isabel María Alonso-Bellido, María S. Letrán-Sánchez, Eva María Pérez-Villegas, Joana Vitallé, Luis Miguel Real, Ezequiel Ruiz-Mateos, José Luis Venero, Lucía Tabares, Ángel Manuel Carrión, José Ángel Armengol, Sara Bachiller and Rocío Ruiz
Int. J. Mol. Sci. 2025, 26(2), 793; https://doi.org/10.3390/ijms26020793 - 18 Jan 2025
Viewed by 1175
Abstract
The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection [...] Read more.
The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection neurons, myelination of the peripheral nervous system, among others. The tambaleante (tbl) mouse model carries the spontaneous mutation Gly483Glu substitution in the HERC1 E3 protein. Using this model, we analyzed the implication of HERC1 E3 ubiquitin ligase in the activity of UPS, autophagy, and synaptic homeostasis in brain and muscle tissues. Regarding UPS, no differences were found in its activity nor in the specific gene expression in both brain and muscle tissues from tbl compared with the control littermates. Furthermore, the use of the specific UPS inhibitor (MG-132), did not alter the evoked neurotransmitter release in the levator auris longus (LAL) muscle. Interestingly, the expression of the autophagy-related gene p62 was significantly increased in the muscle of tbl compared to the control littermates. Indeed, impaired evoked neurotransmitter release was observed with the autophagy inhibitor Wortmannin. Finally, altered levels of Clathrin and Synaptophysin were detected in muscle tissues. Altogether, our findings show that HERC1 E3 ubiquitin ligase mutation found in tbl mice alters autophagy and vesicular recycling without affecting proteasomal function. Full article
(This article belongs to the Special Issue Molecular and Neuromuscular Mechanisms in Skeletal Muscle Aging)
Show Figures

Figure 1

15 pages, 2071 KiB  
Article
The Motility of Mouse Spermatozoa Changes Differentially After 30-Minute Exposure Under Simulating Weightlessness and Hypergravity
by Irina V. Ogneva, Yulia S. Zhdankina, Ksenia K. Gogichaeva, Artyom A. Malkov and Nikolay S. Biryukov
Int. J. Mol. Sci. 2024, 25(24), 13561; https://doi.org/10.3390/ijms252413561 - 18 Dec 2024
Viewed by 869
Abstract
Research into the mechanisms by which gravity influences spermatozoa has implications for maintaining the species in deep space exploration and may provide new approaches to reproductive technologies on Earth. Changes in the speed of mouse spermatozoa after 30 min exposure to simulated weightlessness [...] Read more.
Research into the mechanisms by which gravity influences spermatozoa has implications for maintaining the species in deep space exploration and may provide new approaches to reproductive technologies on Earth. Changes in the speed of mouse spermatozoa after 30 min exposure to simulated weightlessness (by 3D-clinostat) and 2 g hypergravity (by centrifugation) were studied using inhibitory analysis. Simulated microgravity after 30 min led to an increase in the speed of spermatozoa and against the background of an increase in the relative calcium content in the cytoplasm. This effect was prevented by the introduction of 6-(dimethylamino) purine, wortmannin, and calyculin A. Hypergravity led to a decrease in the speed of spermatozoa movement, which was prevented by sodium orthovanadate and calyculin A. At the same time, under microgravity conditions, there was a redistribution of proteins forming microfilament bundles between the membrane and cytoplasmic compartments and under hypergravity conditions—proteins forming networks. The obtained results indicate that even a short exposure of spermatozoa to altered gravity leads to the launch of mechanotransduction pathways in them and a change in motility. Full article
Show Figures

Figure 1

16 pages, 6728 KiB  
Article
Exploring Immune Cell Infiltration and Small Molecule Compounds for Ulcerative Colitis Treatment
by Yi Lu, Dongqing Lu, Chujie Li and Luping Chen
Genes 2024, 15(12), 1548; https://doi.org/10.3390/genes15121548 - 29 Nov 2024
Viewed by 2144
Abstract
Background/Objectives: Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) with a relapsing nature and complex etiology. Bioinformatics analysis has been widely applied to investigate various diseases. This study aimed to identify crucial differentially expressed genes (DEGs) and explore potential therapeutic agents [...] Read more.
Background/Objectives: Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) with a relapsing nature and complex etiology. Bioinformatics analysis has been widely applied to investigate various diseases. This study aimed to identify crucial differentially expressed genes (DEGs) and explore potential therapeutic agents for UC. Methods: The GSE47908 and GSE55306 colon tissue transcriptome gene datasets were downloaded from the Gene Expression Omnibus-NCBI (GEO) database. GEO2R and Gene Set Enrichment Analysis (GSEA) were used to screen for DEGs in patients with UC compared to the normal population based on weighted gene co-expression network analysis (WGCNA). GO-BP analysis and KEGG enrichment analysis were performed on the intersecting differential genes via the Metascape website, while hub genes were analyzed by STRING11.0 and Cytoscape3.7.1. The expression of hub genes was verified in the dataset GSE38713 colon tissue specimens. Finally, the gene expression profiles of the validation set were analyzed by immuno-infiltration through the ImmuCellAI online tool, and the CMap database was used to screen for negatively correlated small molecule compounds. Results: A total of 595 and 926 genes were screened by analysis of GSE47908 and GSE55306 datasets, respectively. Combined WGCNA hub module intersection yielded 12 hub genes (CXCL8, IL1β, CXCL1, CCL20, CXCL2, CXCR2, LCN2, SELL, AGT, LILRB3, MMP3, IDO1) associated with the pathogenesis of UC. GSEA analysis yielded intersecting pathways for both datasets (colorectal cancer pathway, base excision repair, cell cycle, apoptosis). GO-BP and KEGG enrichment analyses were performed to obtain key biological processes (inflammatory response, response to bacteria, leukocyte activation involved in the immune response, leukocyte–cell adhesion, apoptosis, positive regulation of immune effector processes) and key signaling pathways (cytokine–cytokine receptor interactions, IBD, NOD-like receptor signaling pathways). The immune cell infiltration analysis suggested that the incidence of UC was mainly related to the increase in CD4+T cells, depletion of T cells, T follicular helper cells, natural killer cells, γδ T cells and the decrease in CD8 naive T cells, helper T cells 17 and effector T cells. The CMap database results showed that small molecule compounds such as vorinostat, roxarsone, and wortmannin may be therapeutic candidates for UC. Conclusions: This study not only aids in early prediction and prevention but also provides novel insights into the pathogenesis and treatment of UC. Full article
Show Figures

Graphical abstract

18 pages, 5639 KiB  
Article
Amelioration of Cancer Cachexia by Dalbergia odorifera Extract Through AKT Signaling Pathway Regulation
by Phuong T. Ho, Eulyong Park, Quynh Xuan Thi Luong, Meutia Diva Hakim, Phuong T. Hoang, Thuy T. B. Vo, Kantawong Kawalin, Hee Kang, Taek-Kyun Lee and Sukchan Lee
Nutrients 2024, 16(21), 3671; https://doi.org/10.3390/nu16213671 - 28 Oct 2024
Cited by 1 | Viewed by 1662
Abstract
Background/Objectives: Cancer cachexia is a multifactorial syndrome characterized by the progressive loss of skeletal muscle mass and adipose tissue. Dalbergia odorifer is widely used in traditional medicine in Korea and China to treat various diseases. However, its exact role and underlying mechanism in [...] Read more.
Background/Objectives: Cancer cachexia is a multifactorial syndrome characterized by the progressive loss of skeletal muscle mass and adipose tissue. Dalbergia odorifer is widely used in traditional medicine in Korea and China to treat various diseases. However, its exact role and underlying mechanism in regulating cancer cachexia have not been elucidated yet. This research was conducted to investigate the effect of D. odorifer extract (DOE) in preventing the development of cancer-induced cachexia symptoms and figure out the relevant mechanisms. Methods: A cancer cachexia model was established in Balb/c mice using the CT26 colon carcinoma cell line. To evaluate the anti-cachexia effect of Dalbergia odorifer extract (DOE), CT26-bearing mice were orally administered with DOE at concentrations of 50 and 100 mg/kg BW for 14 days. C2C12 myotubes and 3T3L1 adipocytes were treated with 80% CT26 conditioned medium, DOE, and wortmannin, a particular AKT inhibitor to determine the influence of DOE in the AKT signaling pathway. Mice body weight, food intake, myofiber cross-sectional area, adipocyte size, myotube diameter, lipid accumulation, and relevant gene expression were analyzed. Results: The oral administration of DOE at doses of 50 and 100 mg/kg body weight to CT26 tumor-bearing mice resulted in a significant reduction in body weight loss, an increase in food intake, and a decrease in serum glycerol levels. Furthermore, DOE treatment led to an increase in muscle mass, larger muscle fiber diameter, and elevated expression levels of MyH2 and Igf1, while simultaneously reducing the expression of Atrogin1 and MuRF1. DOE also attenuated adipose tissue wasting, as evidenced by increased epididymal fat mass, enlarged adipocyte size, and upregulated Pparγ expression, alongside a reduction in Ucp1 and IL6 levels. In cachectic C2C12 myotubes and 3T3-L1 adipocytes induced by the CT26 conditioned medium, DOE significantly inhibited muscle wasting and lipolysis by activating the AKT signaling pathway. The treatment of wortmannin, a specific AKT inhibitor, effectively neutralized DOE’s impact on the AKT pathway, myotube diameter, and lipid accumulation. Conclusions: DOE ameliorates cancer cachexia through the expression of genes involved in protein synthesis and lipogenesis, while suppressing those related to protein degradation, suggesting its potential as a plant-derived therapeutic agent in combating cancer cachexia. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

20 pages, 4068 KiB  
Article
Effects of Target of Rapamycin and Phosphatidylinositol 3-Kinase Inhibitors and Other Autophagy-Related Supplements on Life Span in y w Male Drosophila melanogaster
by Aaron A. Bearden, Emily M. Stewart, Candace C. Casher, Meredith A. Shaddix, Amber C. Nobles and Robin J. Mockett
Int. J. Mol. Sci. 2024, 25(21), 11504; https://doi.org/10.3390/ijms252111504 - 26 Oct 2024
Viewed by 2019
Abstract
Various dietary supplements have been shown to extend the life span of Drosophila melanogaster, including several that promote autophagy, such as rapamycin and spermidine. The goal of the study presented here was to test numerous additional potential anti-aging supplements, primarily inhibitors of [...] Read more.
Various dietary supplements have been shown to extend the life span of Drosophila melanogaster, including several that promote autophagy, such as rapamycin and spermidine. The goal of the study presented here was to test numerous additional potential anti-aging supplements, primarily inhibitors of the target of rapamycin (TOR) and/or phosphatidylinositol 3-kinase (PI3K). Using a single, comparatively long-lived y w test strain, screening was performed in male flies supplemented either throughout adulthood or, in a few cases, beginning in middle or late adult life, with concentrations spanning 4–6 orders of magnitude in most cases. Supplementation with PP242 and deferiprone, an iron chelator, beginning in late adult life had no positive effect on life span. Lifelong supplementation with Ku-0063794, LY294002, PX-866-17OH, Torin2 and WYE-28 had no effect at any dose. Rapamycin, spermidine and wortmannin all had significant life-shortening effects at the highest doses tested. AZD8055, PI-103 hydrochloride and WYE-132 yielded slight beneficial effects at 1–2 doses, but only 100 nM AZD8055 was confirmed to have a minor (1.3%) effect in a replicate experiment, which was encompassed by other control groups within the same study. These compounds had no effect on fly fecundity (egg laying) or fertility (development of progeny to adulthood), but equivalent high doses of rapamycin abolished fertility. The solvent DMSO had no significant effect on life span at the concentrations used to solubilize most compounds in the fly medium, but it drastically curtailed both survival and fertility at higher concentrations. 2-Hydroxypropyl-β-cyclodextrin also failed to extend the life span when provided throughout adulthood or beginning in mid-adult life. Collectively, the results suggest that inhibition of the TOR/PI3K pathway and autophagy through dietary intervention is not a straightforward anti-aging strategy in Drosophila and that further extension of life is difficult in comparatively long-lived flies. Full article
(This article belongs to the Special Issue Drosophila: A Model System for Human Disease Research)
Show Figures

Figure 1

13 pages, 5343 KiB  
Article
Activation of G Protein-Coupled Estrogen Receptor (GPER) Negatively Modulates Cardiac Excitation–Contraction Coupling (ECC) through the PI3K/NOS/NO Pathway
by Leandro A. Diaz-Zegarra, María S. Espejo, Alejandro M. Ibañez, Mónica E. Rando, Lucia E. Pagola, Verónica C. De Giusti and Ernesto A. Aiello
Int. J. Mol. Sci. 2024, 25(16), 8993; https://doi.org/10.3390/ijms25168993 - 19 Aug 2024
Cited by 2 | Viewed by 2118
Abstract
The G-protein-coupled estrogen receptor (GPER) has been described to exert several cardioprotective effects. However, the exact mechanism involved in cardiac protection remains unclear. The aim of this study is to investigate the role of GPER activation on excitation–contraction coupling (ECC) and the possibility [...] Read more.
The G-protein-coupled estrogen receptor (GPER) has been described to exert several cardioprotective effects. However, the exact mechanism involved in cardiac protection remains unclear. The aim of this study is to investigate the role of GPER activation on excitation–contraction coupling (ECC) and the possibility that such effect participates in cardioprotection. The cardiac myocytes of male Wistar rats were isolated with a digestive buffer and loaded with Fura-2-AM for the measurement of intracellular calcium transient (CaT). Sarcomere shortening (SS) and L-type calcium current (ICaL) were also registered. The confocal technique was used to measure nitric oxide (NO) production in cells loaded with DAF-FM-diacetate. Cardiac myocytes exposed to 17-β-estradiol (E2, 10 nM) or G-1 (1 μM) for fifteen minutes decreased CaT, SS, and ICaL. These effects were prevented using G-36 (antagonist of GPER, 1 μM), L-Name (NO synthase -NOS- inhibitor, 100 nM), or wortmannin (phosphoinositide-3-kinase -PI3K- inhibitor, 100 nM). Moreover, G1 increased NO production, and this effect was abolished in the presence of wortmannin. We concluded that the selective activation of GPER with E2 or G1 in the isolated cardiac myocytes of male rats induced a negative inotropic effect due to the reduction in ICaL and the decrease in CaT. Finally, the pathway that we proposed to be implicated in these effects is PI3K-NOS-NO. Full article
Show Figures

Figure 1

45 pages, 1484 KiB  
Review
Blockage of Autophagy for Cancer Therapy: A Comprehensive Review
by Ahmed Mostafa Ibrahim Abdelrahman Hassan, Yuxin Zhao, Xiuping Chen and Chengwei He
Int. J. Mol. Sci. 2024, 25(13), 7459; https://doi.org/10.3390/ijms25137459 - 7 Jul 2024
Cited by 19 | Viewed by 8154
Abstract
The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, [...] Read more.
The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, drug resistance, and treatment. This review investigates the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms used were “Autophagy”, “Inhibitors”, “Molecular mechanism”, “Cancer therapy”, and “Clinical trials”. Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome degradation. Other inhibitors like wortmannin and SAR405 target specific components of the autophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and HCQ have shown encouraging results, although further investigation is needed to optimize their use in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particularly when integrated with existing treatments. However, the complexity of autophagy regulation and the potential side effects necessitate further research to develop precise and context-specific therapeutic approaches. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation)
Show Figures

Figure 1

18 pages, 23455 KiB  
Article
17β-Estradiol (E2) Activates Matrix Mineralization through Genomic/Nongenomic Pathways in MC3T3-E1 Cells
by Hiraku Suzuki, Yuki Fujiwara, Winda Ariyani, Izuki Amano, Sumiyasu Ishii, Ayane Kate Ninomiya, Seiichi Sato, Akinori Takaoka and Noriyuki Koibuchi
Int. J. Mol. Sci. 2024, 25(9), 4727; https://doi.org/10.3390/ijms25094727 - 26 Apr 2024
Viewed by 1802
Abstract
Estrogen plays an important role in osteoporosis prevention. We herein report the possible novel signaling pathway of 17β-estradiol (E2) in the matrix mineralization of MC3T3-E1, an osteoblast-like cell line. In the culture media-containing stripped serum, in which small lipophilic molecules such as steroid [...] Read more.
Estrogen plays an important role in osteoporosis prevention. We herein report the possible novel signaling pathway of 17β-estradiol (E2) in the matrix mineralization of MC3T3-E1, an osteoblast-like cell line. In the culture media-containing stripped serum, in which small lipophilic molecules such as steroid hormones including E2 were depleted, matrix mineralization was significantly reduced. However, the E2 treatment induced this. The E2 effects were suppressed by ICI182,780, the estrogen receptor (ER)α, and the ERβ antagonist, as well as their mRNA knockdown, whereas Raloxifene, an inhibitor of estrogen-induced transcription, and G15, a G-protein-coupled estrogen receptor (GPER) 1 inhibitor, had little or no effect. Furthermore, the E2-activated matrix mineralization was disrupted by PMA, a PKC activator, and SB202190, a p38 MAPK inhibitor, but not by wortmannin, a PI3K inhibitor. Matrix mineralization was also induced by the culture media from the E2-stimulated cell culture. This effect was hindered by PMA or heat treatment, but not by SB202190. These results indicate that E2 activates the p38 MAPK pathway via ERs independently from actions in the nucleus. Such activation may cause the secretion of certain signaling molecule(s), which inhibit the PKC pathway. Our study provides a novel pathway of E2 action that could be a therapeutic target to activate matrix mineralization under various diseases, including osteoporosis. Full article
(This article belongs to the Special Issue Steroids and Lipophilic Hormones, and Their Actions 3.0)
Show Figures

Graphical abstract

12 pages, 1432 KiB  
Article
New Phenol Derivatives from the Haima Cold Seep-Derived Fungus Aspergillus subversicolor CYH-17
by Yi-Hao Che, Wen-Ping Ding, Zhi-Hui Xiao, Jia-Min Wu, Hao Yin, Fa-Zuo Wang and Si Zhang
Mar. Drugs 2024, 22(3), 117; https://doi.org/10.3390/md22030117 - 29 Feb 2024
Cited by 3 | Viewed by 2560
Abstract
Seven new phenol derivatives, subversins A–E (15), subversic acid A (6) and epi-wortmannine G (7); one new natural product, 4-hydroxy-7-methoxyphthalide (8); and five known compounds (913) were isolated [...] Read more.
Seven new phenol derivatives, subversins A–E (15), subversic acid A (6) and epi-wortmannine G (7); one new natural product, 4-hydroxy-7-methoxyphthalide (8); and five known compounds (913) were isolated from the fungus Aspergillus subversicolor CYH-17 collected from the Haima cold seep. The structures and absolute configurations of these compounds were determined via NMR, MS, optical rotation, electronic circular dichroism (ECD) calculation, X-ray diffraction analysis and comparison with the literature. Compounds 2 and 5 were two pairs of enantiomers. All compounds were tested for their α-glucosidase and acetylcholinesterase (AChE) inhibitory activity, antioxidant activity and antibacterial activity, but no obvious activity was observed among these studied compounds. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi 2.0)
Show Figures

Graphical abstract

25 pages, 3337 KiB  
Article
A Combination of Heavy Metals and Intracellular Pathway Modulators Induces Alzheimer Disease-like Pathologies in Organotypic Brain Slices
by Dhwani S. Korde and Christian Humpel
Biomolecules 2024, 14(2), 165; https://doi.org/10.3390/biom14020165 - 30 Jan 2024
Cited by 5 | Viewed by 2744
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by amyloid-beta (Aβ) plaques and tau neurofibrillary tangles (NFT). Modelling aspects of AD is challenging due to its complex multifactorial etiology and pathology. The present study aims to establish a cost-effective and [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by amyloid-beta (Aβ) plaques and tau neurofibrillary tangles (NFT). Modelling aspects of AD is challenging due to its complex multifactorial etiology and pathology. The present study aims to establish a cost-effective and rapid method to model the two primary pathologies in organotypic brain slices. Coronal hippocampal brain slices (150 µm) were generated from postnatal (day 8–10) C57BL6 wild-type mice and cultured for 9 weeks. Collagen hydrogels containing either an empty load or a mixture of human Aβ42 and P301S aggregated tau were applied to the slices. The media was further supplemented with various intracellular pathway modulators or heavy metals to augment the appearance of Aβ plaques and tau NFTs, as assessed by immunohistochemistry. Immunoreactivity for Aβ and tau was significantly increased in the ventral areas in slices with a mixture of human Aβ42 and P301S aggregated tau compared to slices with empty hydrogels. Aβ plaque- and tau NFT-like pathologies could be induced independently in slices. Heavy metals (aluminum, lead, cadmium) potently augmented Aβ plaque-like pathology, which developed intracellularly prior to cell death. Intracellular pathway modulators (scopolamine, wortmannin, MHY1485) significantly boosted tau NFT-like pathologies. A combination of nanomolar concentrations of scopolamine, wortmannin, MHY1485, lead, and cadmium in the media strongly increased Aβ plaque- and tau NFT-like immunoreactivity in ventral areas compared to the slices with non-supplemented media. The results highlight that we could harness the potential of the collagen hydrogel-based spreading of human Aβ42 and P301S aggregated tau, along with pharmacological manipulation, to produce pathologies relevant to AD. The results offer a novel ex vivo organotypic slice model to investigate AD pathologies with potential applications for screening drugs or therapies in the future. Full article
(This article belongs to the Special Issue Role of Amyloid Protein in Neurological Diseases)
Show Figures

Figure 1

Back to TopTop