Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Warburgia ugandensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3361 KB  
Article
Efficacy of Botanical Extract Formulations of Zanthroxylum usambarense and Warburgia ugandensis on Post-Harvest Management of Sitophilus zeamais in Maize
by Rhonest Siroya Mpoke, Johnson Kinyua, Josephine Wambaire Kimani, Inusa Jacob Ajene, Paddy Likhayo and Fathiya Mbarak Khamis
Sustainability 2023, 15(14), 10833; https://doi.org/10.3390/su151410833 - 10 Jul 2023
Cited by 3 | Viewed by 2860
Abstract
Sitophilus zeamais causes significant losses to maize produce worldwide. The use of biodegradable and environmentally friendly botanicals as an alternative to synthetic pesticides is increasingly becoming important. Therefore, we sought to determine the use of plant extract formulations to manage S. zeamais during [...] Read more.
Sitophilus zeamais causes significant losses to maize produce worldwide. The use of biodegradable and environmentally friendly botanicals as an alternative to synthetic pesticides is increasingly becoming important. Therefore, we sought to determine the use of plant extract formulations to manage S. zeamais during storage. Crude Zanthroxylum usambarense and Warburgia ugandensis stembark extracts were used for contact toxicity and repellent bioassays against S. zeamais. The formulations that exhibited the highest repellence and mortality were tested for insecticidal activity during storage for six months. Phytochemical profiles of the extracts were determined using GC-MS, and molecular docking of active compounds against insect target proteins was done. Mortality analyses revealed LD50 values of 114.89 µg/mL and 197.19 µg/mL for Z. usambarense’s hexane and methanol organic extracts, respectively. Warburgia ugandensis extracts had LD50 values of 69.25 µg/mL and 163.52 µg/mL, respectively. Extract formulations achieved weevil perforation index values of <50.00 in all treatments. The docking analysis showed the pesticidal potential of several compounds, and mortality could be attributed to Eugenol (19.28%), 1,8-cineole (5.78%) and Linalool (21.42%). The tested botanicals have demonstrated their ability to suppress S. zeamais development in stored maize and could be utilized to protect maize grains during storage. Full article
(This article belongs to the Special Issue Sustainable Integrated Pest Management: Achievements and Challenges)
Show Figures

Figure 1

11 pages, 520 KB  
Review
An Annotated Inventory of Tanzanian Medicinal Plants Traditionally Used for the Treatment of Respiratory Bacterial Infections
by Ester Innocent, Alphonce Ignace Marealle, Peter Imming and Lucie Moeller
Plants 2022, 11(7), 931; https://doi.org/10.3390/plants11070931 - 30 Mar 2022
Cited by 8 | Viewed by 3642
Abstract
This review comprehensively covers and analyzes scientific information on plants used in Tanzanian traditional medicine against respiratory diseases. It covers ethnobotanical and ethnopharmacological information extracted from SciFinder, Google Scholar, and Reaxys as well as the literature collected at the Institute of Traditional Medicine [...] Read more.
This review comprehensively covers and analyzes scientific information on plants used in Tanzanian traditional medicine against respiratory diseases. It covers ethnobotanical and ethnopharmacological information extracted from SciFinder, Google Scholar, and Reaxys as well as the literature collected at the Institute of Traditional Medicine in Dar-es-Salaam. Crude extracts and fractions of 133 plant species have literature reports on antimicrobial bioassays. Of these, 16 plant species had a minimum inhibitory activity of MIC ≤ 50 µg/mL. Structurally diverse compounds were reported for 49 plant species, of which 7 had constituents with MIC ≤ 5 µg/mL against various bacteria: Bryophyllum pinnatum (Lam.) Oken, Warburgia ugandensis Sprague, Diospyros mespiliformis Hochst. ex DC., Cassia abbreviata Oliv., Entada abyssinica A. Rich., Strychnos spinosa Lam., and Milicia excelsa (Welw.) C.C. Berg. The low number of antimicrobial active extracts and compounds suggests that antibacterial and antimycobacterial drug discovery needs to have a fresh look at ethnobotanical information, diverting from too reductionist an approach and better taking into account that the descriptions of symptoms and concepts of underlying diseases are different in traditional African and modern Western medicine. Nevertheless, some structurally diverse compounds found in anti-infective plants are highlighted in this review as worthy of detailed study and chemical modification. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

15 pages, 2021 KB  
Article
Warburgia ugandensis Leaf and Bark Extracts: An Alternative to Copper as Fungicide against Downy Mildew in Organic Viticulture?
by Christian Kraus, Rada Abou-Ammar, Andreas Schubert and Michael Fischer
Plants 2021, 10(12), 2765; https://doi.org/10.3390/plants10122765 - 14 Dec 2021
Cited by 5 | Viewed by 4381
Abstract
In organic viticulture, copper-based fungicides are commonly used to suppress Downy Mildew infection, caused by the oomycete Plasmopara viticola. However, the frequent and intensive use of such fungicides leads to accumulation of the heavy metal in soil and nearby waters with adverse [...] Read more.
In organic viticulture, copper-based fungicides are commonly used to suppress Downy Mildew infection, caused by the oomycete Plasmopara viticola. However, the frequent and intensive use of such fungicides leads to accumulation of the heavy metal in soil and nearby waters with adverse effects on the ecosystem. Therefore, alternative, organic fungicides against Downy Mildew are urgently needed to reduce the copper load in vineyards. In this study, the use of Warburgia ugandensis Sprague (Family Canellacea) leaf and bark extracts as potential fungicides against Downy Mildew were evaluated. In vitro (microtiter) and in vivo (leaf discs, seedlings) tests were conducted, as well as field trials to determine the efficacy of the extracts against Downy Mildew. The results revealed an MIC100 of 500 µg/mL for the leaf extract and 5 µg/mL for the bark extract. Furthermore, experiments with leaf discs and seedlings demonstrated a strong protective effect of the extracts for up to 48 h under (semi-) controlled conditions. However, in field trials the efficacy of the extracts distinctly declined, regardless of the extracts’ origin and concentration. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Figure 1

15 pages, 3102 KB  
Article
Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus in a Kenyan Maasai Adolescent Population and Inhibition of Leukotoxic Activity by Herbal Plants Used as Part of Oral Hygiene Procedures
by Mark Lindholm, Rolf Claesson, Arthur Kemoli, Tonnie Mulli, Jan Oscarsson, Dorte Haubek and Anders Johansson
J. Clin. Med. 2021, 10(22), 5402; https://doi.org/10.3390/jcm10225402 - 19 Nov 2021
Cited by 6 | Viewed by 2791
Abstract
Background: A virulent genotype (JP2) of the periodonto-pathogen, Aggregatibacter actinomycetemcomitans (Aa), is widespread in North and West Africa, while its presence in East Africa has not been thoroughly investigated. This JP2 genotype is associated with periodontitis in adolescents and has a [...] Read more.
Background: A virulent genotype (JP2) of the periodonto-pathogen, Aggregatibacter actinomycetemcomitans (Aa), is widespread in North and West Africa, while its presence in East Africa has not been thoroughly investigated. This JP2 genotype is associated with periodontitis in adolescents and has a high leukotoxicity. The aim of the study was to examine the prevalence of Aa and its JP2 genotype, the prevalence of the oral, commensal Aggregatibacter aphrophilus in a Maasai adolescent population, and the effect of herbal plants for inhibition of leukotoxicity. Methods: A total of 284 adolescents from Maasai Mara, Kenya, underwent an oral examination and microbial sampling. The presence of Aa and A. aphrophilus was analyzed by quantitative PCR and cultivation (the 58 samples collected at the last day of field study). The collected Aa strains were characterized and leukotoxin promoter typed. Additionally, herbal plants commonly used for oral hygiene were assessed for the inhibition of leukotoxicity. Results and Conclusions: The prevalence of Aa in stimulated whole saliva was high (71.8%), with the JP2 genotype detected in one individual, and A. aphrophilus in 99% of the sampled individuals. The commonly used herbal plant, Warburgia ugandensis, inactivated Aa leukotoxicity. The Aa virulence might be reduced through use of W. ugandensis and the high levels of A. aphrophilus. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

16 pages, 2634 KB  
Article
Stimulation of ROS Generation by Extract of Warburgia ugandensis Leading to G0/G1 Cell Cycle Arrest and Antiproliferation in A549 Cells
by Yong-Li Zhang, Gui-Lin Chen, Ye Liu, Xiao-Cui Zhuang and Ming-Quan Guo
Antioxidants 2021, 10(10), 1559; https://doi.org/10.3390/antiox10101559 - 30 Sep 2021
Cited by 12 | Viewed by 4172
Abstract
Warburgia ugandensis Sprague (WU) is a traditional medicinal plant used for the treatment of various diseases, including cancer, in Africa. This study aimed to evaluate the anti-non-small cell lung cancer (NSCLC) activities of WU against A549 cells and to reveal potential molecular mechanisms. [...] Read more.
Warburgia ugandensis Sprague (WU) is a traditional medicinal plant used for the treatment of various diseases, including cancer, in Africa. This study aimed to evaluate the anti-non-small cell lung cancer (NSCLC) activities of WU against A549 cells and to reveal potential molecular mechanisms. The cytotoxicity of various WU extracts was evaluated with HeLa (cervical cancer), HepG2 (liver cancer), HT-29 (colorectal cancer), and A549 (non-small cell lung cancer) cells by means of Sulforhodamine B (SRB) assay. Therein, the dimethyl carbonate extract of WU (WUD) was tested with the most potent anti-proliferative activity against the four cancer cell lines, and its effects on cell viability, cell cycle progression, DNA damage, intracellular reactive oxygen species (ROS), and expression levels of G0/G1-related proteins in A549 cells were further examined. First, it was found that WUD inhibited the proliferation of A549 cells in a time- and dose-dependent manner. In addition, WUD induced G0/G1 phase arrest and modulated the expression of G0/G1 phase-associated proteins Cyclin D1, Cyclin E1, and P27 in A549 cells. Furthermore, WUD increased the protein abundance of P27 by inhibiting FOXO3A/SKP2 axis-mediated protein degradation and also significantly induced the γH2AX expression and intracellular ROS generation of A549 cells. It was also found that the inhibitory effect of WUD on the proliferation and G0/G1 cell cycle progression of A549 cells could be attenuated by NAC, a ROS scavenger. On the other hand, phytochemical analysis of WUD with UPLC-QTOF-MS/MS indicated 10 sesquiterpenoid compounds. In conclusion, WUD exhibited remarkable anti-proliferative effects on A549 cells by improving the intracellular ROS level and by subsequently modulating the cell proliferation and G0/G1 cell cycle progression of A549 cells. These findings proved the good therapeutic potential of WU for the treatment of NSCLC. Full article
Show Figures

Figure 1

18 pages, 2915 KB  
Article
Identification of Anti-Inflammatory and Anti-Proliferative Neolignanamides from Warburgia ugandensis Employing Multi-Target Affinity Ultrafiltration and LC-MS
by Xiao-Cui Zhuang, Yong-Li Zhang, Gui-Lin Chen, Ye Liu, Xiao-Lan Hu, Na Li, Jian-Lin Wu and Ming-Quan Guo
Pharmaceuticals 2021, 14(4), 313; https://doi.org/10.3390/ph14040313 - 1 Apr 2021
Cited by 14 | Viewed by 5250
Abstract
Previous reports have illustrated that the incidence and mortality of cancer are increasing year by year worldwide. In addition, the occurrence, development, recurrence and metastasis of cancer are closely related to inflammation, which is a kind of defensive response of human body to [...] Read more.
Previous reports have illustrated that the incidence and mortality of cancer are increasing year by year worldwide. In addition, the occurrence, development, recurrence and metastasis of cancer are closely related to inflammation, which is a kind of defensive response of human body to various stimuli. As an important medicinal plant in Africa, Warburgia ugandensis has been reported to have certain anti-inflammatory and anti-proliferative activities, but its specific components and mechanisms of action remain elusive. To tackle this challenge, affinity ultrafiltration with drug targets of interest coupled to high-performance liquid chromatography-mass spectrometry (AUF-HPLC-MS/MS) could be utilized to quickly screen out bioactive constituents as ligands against target enzymes from complex extracts of this plant. AUF-HPLC-MS/MS with four drug targets, i.e., cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), topoisomerase I (Top I) and topoisomerase II (Top II) were used to rapidly screen and characterize the anti-inflammatory and anti-proliferative natural ligands from W. ugandensis, and the resulting potential active compounds as ligands with specific binding affinity to COX-2, 5-LOX, Top I and Top II, were isolated with modern separation and purification techniques and identified with spectroscopic method like NMR, and then their antiinflammatory and anti-proliferative activities were tested to verify the screening results from AUF-HPLC-MS/MS. Compounds 1 and 2, which screened out and identified from W. ugandensis showed remarkable binding affinity to COX-2, 5-LOX, Top I and Top II with AUF-HPLC-MS/MS. In addition, 1 new compound (compound 3), together with 5 known compounds were also isolated and identified from W. ugandensis. The structure of compound 3 was elucidated by extensive 1D, 2D NMR data and UPLC-QTOF-MS/MS. Furthermore, compounds 1 and 2 were further proved to possess both anti-inflammatory and anti-proliferative activities which are in good agreement with the screening results using AUF-HPLC-MS/MS. This work showcased an efficient method for quickly screening out bioactive components with anti-inflammatory and anti-proliferative activity from complex medicinal plant extracts using AUF-HPLC-MS/MS with target enzymes of interest, and also demonstrated that neolignanamides (compounds 1 and 2) from W. ugandensis would be the active components responsible for its anti-inflammatory and anti-proliferative activity with the potential to treat cancer and inflammation. Full article
(This article belongs to the Special Issue Natural Pharmacons: Biologically Active Plant Based Pharmaceuticals)
Show Figures

Figure 1

19 pages, 1613 KB  
Article
New Lignanamides with Antioxidant and Anti-Inflammatory Activities Screened Out and Identified from Warburgia ugandensis Combining Affinity Ultrafiltration LC-MS with SOD and XOD Enzymes
by Xiao-Cui Zhuang, Gui-Lin Chen, Ye Liu, Yong-Li Zhang and Ming-Quan Guo
Antioxidants 2021, 10(3), 370; https://doi.org/10.3390/antiox10030370 - 1 Mar 2021
Cited by 23 | Viewed by 4661
Abstract
Warburgia ugandensis, also known as “green heart,” is widely used for the treatment of various diseases as a traditional ethnomedicinal plant in local communities in Africa. In this work, 9 and 12 potential superoxide dismutase (SOD) and xanthine oxidase (XOD) ligands from [...] Read more.
Warburgia ugandensis, also known as “green heart,” is widely used for the treatment of various diseases as a traditional ethnomedicinal plant in local communities in Africa. In this work, 9 and 12 potential superoxide dismutase (SOD) and xanthine oxidase (XOD) ligands from W. ugandensis were quickly screened out by combining SOD and XOD affinity ultrafiltration with LC-MS, respectively. In this way, four new lignanamides (compounds 1114) and one new macrocyclic glycoside (compound 5), along with three known compounds (compounds 1, 3, and 7), were isolated and identified firstly in this species. The structures of the new compounds were elucidated by spectroscopic analysis, including NMR and UPLC-QTOF-MS/MS. Among these compounds, compound 14 showed the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activities, and total ferric-reducing antioxidant power (FRAP) with IC50 values of 6.405 ± 0.362 µM, 5.381 ± 0.092 µM, and 17.488 ± 1.625 mmol TE/g, respectively. Moreover, compound 14 displayed the highest inhibitory activity on cyclooxygenase-2 (COX-2) with IC50 value of 0.123 ± 0.004 µM, and the ranking order of other compounds’ IC50 values was 13 > 11 > 7 > 1 > 12. The present study suggested that lignanamides might represent interesting new characteristic functional components of W. ugandensis to exert remarkable antioxidant and anti-inflammatory activities. Moreover, compound 14, a new arylnaphthalene lignanamide, would be a highly potential natural antioxidant and anti-inflammatory agent from W. ugandensis. Full article
(This article belongs to the Special Issue Antioxidant and Biological Properties of Plant Extracts)
Show Figures

Graphical abstract

30 pages, 3376 KB  
Article
Antiinflammatory Medicinal Plants from the Ugandan Greater Mpigi Region Act as Potent Inhibitors in the COX-2/PGH2 Pathway
by Fabien Schultz, Ogechi Favour Osuji, Barbara Wack, Godwin Anywar and Leif-Alexander Garbe
Plants 2021, 10(2), 351; https://doi.org/10.3390/plants10020351 - 12 Feb 2021
Cited by 27 | Viewed by 9614
Abstract
Our study investigates 16 medicinal plants via assessment of inhibition of proinflammatory enzymes such as cyclooxygenases (COX). The plants are used by traditional healers in the Greater Mpigi region in Uganda to treat inflammation and related disorders. We present results of diverse in [...] Read more.
Our study investigates 16 medicinal plants via assessment of inhibition of proinflammatory enzymes such as cyclooxygenases (COX). The plants are used by traditional healers in the Greater Mpigi region in Uganda to treat inflammation and related disorders. We present results of diverse in vitro experiments performed with 76 different plant extracts, namely, (1) selective COX-2 and COX-1 inhibitor screening; (2) 15-LOX inhibition screening; (3) antibacterial resazurin assay against multidrug-resistant Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, and Escherichia coli K12; (4) DPPH assay for antioxidant activity; and (5) determination of the total phenolic content (TPC). Results showed a high correlation between traditional use and pharmacological activity, e.g., extracts of 15 out of the 16 plant species displayed significant selective COX-2 inhibition activity in the PGH2 pathway. The most active COX-2 inhibitors (IC50 < 20 µg/mL) were nine extracts from Leucas calostachys, Solanum aculeastrum, Sesamum calycinum subsp. angustifolium, Plectranthus hadiensis, Morella kandtiana, Zanthoxylum chalybeum, and Warburgia ugandensis. There was no counteractivity between COX-2 and 15-LOX inhibition in these nine extracts. The ethyl acetate extract of Leucas calostachys showed the lowest IC50 value with 0.66 µg/mL (COX-2), as well as the most promising selectivity ratio with 0.1 (COX-2/COX-1). The TPCs and the EC50 values for DPPH radical scavenging activity showed no correlation with COX-2 inhibitory activity. This led to the assumption that the mechanisms of action are most likely not based on scavenging of reactive oxygen species and antioxidant activities. The diethyl ether extract of Harungana madagascariensis stem bark displayed the highest growth inhibition activity against S. aureus (MIC value: 13 µg/mL), L. innocua (MIC value: 40 µg/mL), and L. monocytogenes (MIC value: 150 µg/mL). This study provides further evidence for the therapeutic use of the previously identified plants used medicinally in the Greater Mpigi region. Full article
(This article belongs to the Special Issue Research of Bioactive Substances in Plant Extracts)
Show Figures

Figure 1

16 pages, 2132 KB  
Article
Insecticidal and Antifeedant Activities of Malagasy Medicinal Plant (Cinnamosma sp.) Extracts and Drimane-Type Sesquiterpenes against Aedes aegypti Mosquitoes
by Edna Alfaro Inocente, Bao Nguyen, Preston K. Manwill, Annecie Benatrehina, Eliningaya Kweka, Sijin Wu, Xiaolin Cheng, L. Harinantenaina Rakotondraibe and Peter M. Piermarini
Insects 2019, 10(11), 373; https://doi.org/10.3390/insects10110373 - 25 Oct 2019
Cited by 18 | Viewed by 6646
Abstract
The overuse of insecticides with limited modes of action has led to resistance in mosquito vectors. Thus, insecticides with novel modes of action are needed. Secondary metabolites in Madagascan plants of the genus Cinnamosma (Canellaceae) are commonly used in traditional remedies and known [...] Read more.
The overuse of insecticides with limited modes of action has led to resistance in mosquito vectors. Thus, insecticides with novel modes of action are needed. Secondary metabolites in Madagascan plants of the genus Cinnamosma (Canellaceae) are commonly used in traditional remedies and known to elicit antifeedant and toxic effects in insect pests. Here we test the hypothesis that extracts of Cinnamosma sp. enriched in drimane sesquiterpenes are toxic and/or antifeedant to the yellow fever mosquito Aedes aegypti. We show that the bark and root extracts, which contain a higher abundance of drimane sesquiterpenes compared to leaves, were the most efficacious. Screening isolated compounds revealed cinnamodial to be the primary driver of adulticidal activity, whereas cinnamodial, polygodial, cinnafragrin A, and capsicodendrin contributed to the larvicidal activity. Moreover, an abundant lactone (cinnamosmolide) in the root extract synergized the larvicidal effects of cinnamodial. The antifeedant activity of the extracts was primarily contributed to cinnamodial, polygodial, and cinnamolide. Parallel experiments with warburganal isolated from Warburgia ugandensis (Canellaceae) revealed that aldehydes are critical for—and a hydroxyl modulates—insecticidal activity. Our results indicate that plant drimane sesquiterpenes provide valuable chemical platforms for developing insecticides and repellents to control mosquito vectors. Full article
(This article belongs to the Special Issue Vectors and Vector-borne Diseases)
Show Figures

Figure 1

7 pages, 104 KB  
Article
Ugandenial A, a New Drimane-type Sesquiterpenoid from Warburgia ugandensis
by Min Xu, Marc Litaudon, Sabrina Krief, Marie-Thérèse Martin, John Kasenene, Bernard Kiremire, Vincent Dumontet and Françoise Guéritte
Molecules 2009, 14(10), 3844-3850; https://doi.org/10.3390/molecules14103844 - 28 Sep 2009
Cited by 26 | Viewed by 12228
Abstract
One new drimane-type sesquiterpenoid, named ugandenial A (1), was isolated from the ethyl acetate extract of the bark of Warburgia ugandensis (Canellaceae) together with eight known drimane-type sesquiterpenoids: 11α-hydroxycinnamosmolide (2), warburganal (3), polygodial (4), mukaadial (5), dendocarbin A (6), 9α-hydroxycinnamolide (7), dendocarbin L [...] Read more.
One new drimane-type sesquiterpenoid, named ugandenial A (1), was isolated from the ethyl acetate extract of the bark of Warburgia ugandensis (Canellaceae) together with eight known drimane-type sesquiterpenoids: 11α-hydroxycinnamosmolide (2), warburganal (3), polygodial (4), mukaadial (5), dendocarbin A (6), 9α-hydroxycinnamolide (7), dendocarbin L (8) and dendocarbin M (9). Their structures were established by detailed spectroscopic analysis. In addition a keto-enol equilibrium was demonstrated for compound 1 through a detailed NMR analysis run in CD2Cl2 at 190 K. Cytotoxicity of the isolated compounds against KB cells was evaluated. Full article
Show Figures

Graphical abstract

Back to TopTop