Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = WISP2/CCN5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3287 KiB  
Article
Stage-Dependent Fibrotic Gene Profiling of WISP1-Mediated Fibrogenesis in Human Fibroblasts
by Kirti Singh, Marta Witek, Jaladhi Brahmbhatt, Jacquelyn McEntire, Kannan Thirunavukkarasu and Sunday S. Oladipupo
Cells 2024, 13(23), 2005; https://doi.org/10.3390/cells13232005 - 5 Dec 2024
Cited by 2 | Viewed by 1627
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease with unknown etiology, characterized by chronic inflammation and tissue scarring. Although, Pirfenidone and Nintedanib slow the disease progression, no currently available drugs or therapeutic interventions address the underlying cause, highlighting the unmet [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease with unknown etiology, characterized by chronic inflammation and tissue scarring. Although, Pirfenidone and Nintedanib slow the disease progression, no currently available drugs or therapeutic interventions address the underlying cause, highlighting the unmet medical need. A matricellular protein, Wnt-1-induced secreted protein 1 (WISP1), also referred to as CCN4 (cellular communication network factor 4), is a secreted multi-modular protein implicated in multi-organ fibrosis. Although the precise mechanism of WISP1-mediated fibrosis remains unclear, emerging evidence indicates that WISP1 is profibrotic in nature. While WISP1-targeting therapy is applied in the clinic for fibrosis, detailed interrogation of WISP1-mediated fibrogenic molecular and biological pathways is lacking. Here, for the first time, using NanoString® technology, we identified a novel WISP1-associated profibrotic gene signature and molecular pathways potentially involved in the initiation and progression of fibrosis in primary human dermal and lung fibroblasts from both healthy individuals and IPF patients. Our data demonstrate that WISP1 is upregulated in IPF-lung fibroblasts as compared to healthy control. Furthermore, our results confirm that WISP1 is downstream of the transforming growth factor-β (TGFβ), and it induces fibroblast cell proliferation. Additionally, WISP1 induced IL6 and CCL2 in fibroblasts. We also developed a novel, combined TGFβ and WISP1 in vitro system to demonstrate a role for WISP1 in the progression of fibrosis. Overall, our findings uncover not only similarities but also striking differences in the molecular profile of WISP1 in human fibroblasts, both during the initiation and progression phases, as well as in disease-specific context. Full article
Show Figures

Graphical abstract

15 pages, 11742 KiB  
Article
Role of WISP1 in Stellate Cell Migration and Liver Fibrosis
by Daniela González, Gisela Campos, Larissa Pütter, Adrian Friebel, Christian H. Holland, Leonhard Holländer, Ahmed Ghallab, Zaynab Hobloss, Maiju Myllys, Stefan Hoehme, Nadja M. Meindl-Beinker, Steven Dooley, Rosemarie Marchan, Thomas S. Weiss, Jan G. Hengstler and Patricio Godoy
Cells 2024, 13(19), 1629; https://doi.org/10.3390/cells13191629 - 29 Sep 2024
Cited by 2 | Viewed by 1631
Abstract
The mechanisms underlying the remarkable capacity of the liver to regenerate are still not completely understood. Particularly, the cross-talk between cytokines and cellular components of the process is of utmost importance because they represent potential avenues for diagnostics and therapeutics. WNT1-inducible-signaling pathway protein [...] Read more.
The mechanisms underlying the remarkable capacity of the liver to regenerate are still not completely understood. Particularly, the cross-talk between cytokines and cellular components of the process is of utmost importance because they represent potential avenues for diagnostics and therapeutics. WNT1-inducible-signaling pathway protein 1 (WISP1) is a cytokine member of the CCN family, a family of proteins that play many different roles in liver pathophysiology. WISP1 also belongs to the earliest and strongest upregulated genes in mouse livers after CCl4 intoxication and has recently been shown to be secreted by tumor cells and to bind to type 1 collagen to cause its linearization in vitro and in tumor tissue in vivo. We show that WISP1 expression is strongly induced by TGFβ, a critical cytokine in wound healing processes. Additionally, secretion of WISP1 protein by hepatic stellate is increased in cells upon TGFβ stimulation (~seven-fold increase). Furthermore, WISP1 facilitates the migration of mouse hepatic stellate cells through collagen in vitro. However, in WISP1 knockout mice, no difference in stellate cell accumulation in damaged liver tissue and no influence on fibrosis was obtained, probably because the knockout of WISP1 was compensated by other factors in vivo. Full article
Show Figures

Figure 1

17 pages, 7054 KiB  
Article
WISP-1 Regulates Cardiac Fibrosis by Promoting Cardiac Fibroblasts’ Activation and Collagen Processing
by Ze Li, Helen Williams, Molly L. Jackson, Jason L. Johnson and Sarah J. George
Cells 2024, 13(11), 989; https://doi.org/10.3390/cells13110989 - 6 Jun 2024
Cited by 2 | Viewed by 2201
Abstract
Hypertension induces cardiac fibrotic remodelling characterised by the phenotypic switching of cardiac fibroblasts (CFs) and collagen deposition. We tested the hypothesis that Wnt1-inducible signalling pathway protein-1 (WISP-1) promotes CFs’ phenotypic switch, type I collagen synthesis, and in vivo fibrotic remodelling. The treatment of [...] Read more.
Hypertension induces cardiac fibrotic remodelling characterised by the phenotypic switching of cardiac fibroblasts (CFs) and collagen deposition. We tested the hypothesis that Wnt1-inducible signalling pathway protein-1 (WISP-1) promotes CFs’ phenotypic switch, type I collagen synthesis, and in vivo fibrotic remodelling. The treatment of human CFs (HCFs, n = 16) with WISP-1 (500 ng/mL) induced a phenotypic switch (α-smooth muscle actin-positive) and type I procollagen cleavage to an intermediate form of collagen (pC-collagen) in conditioned media after 24h, facilitating collagen maturation. WISP-1-induced collagen processing was mediated by Akt phosphorylation via integrin β1, and disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2). WISP-1 wild-type (WISP-1+/+) mice and WISP-1 knockout (WISP-1−/−) mice (n = 5–7) were subcutaneously infused with angiotensin II (AngII, 1000 ng/kg/min) for 28 days. Immunohistochemistry revealed the deletion of WISP-1 attenuated type I collagen deposition in the coronary artery perivascular area compared to WISP-1+/+ mice after a 28-day AngII infusion, and therefore, the deletion of WISP-1 attenuated AngII-induced cardiac fibrosis in vivo. Collectively, our findings demonstrated WISP-1 is a critical mediator in cardiac fibrotic remodelling, by promoting CFs’ activation via the integrin β1-Akt signalling pathway, and induced collagen processing and maturation via ADAMTS-2. Thereby, the modulation of WISP-1 levels could provide potential therapeutic targets in clinical treatment. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

33 pages, 2534 KiB  
Review
Microglia and Brain Macrophages as Drivers of Glioma Progression
by Yuqi Zheng and Manuel B. Graeber
Int. J. Mol. Sci. 2022, 23(24), 15612; https://doi.org/10.3390/ijms232415612 - 9 Dec 2022
Cited by 22 | Viewed by 7157
Abstract
Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially [...] Read more.
Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially in the context of therapeutic considerations. New ideas have emerged regarding the role of microglia and, more recently, blood-derived brain macrophages in glioblastoma (GBM) progression. We are now beginning to understand the mechanisms that allow malignant glioma cells to weaken microglia and brain macrophage defence mechanisms. Surface molecules and cytokines have a prominent role in microglia/macrophage-glioma cell interactions, and we discuss them in detail. The involvement of exosomes and microRNAs forms another focus of this review. In addition, certain microglia and glioma cell pathways deserve special attention. These “synergistic” (we suggest calling them “Janus”) pathways are active in both glioma cells and microglia/macrophages where they act in concert supporting malignant glioma progression. Examples include CCN4 (WISP1)/Integrin α6β1/Akt and CHI3L1/PI3K/Akt/mTOR. They represent attractive therapeutic targets. Full article
(This article belongs to the Special Issue Latest Review Papers in Neurobiology 2023)
Show Figures

Figure 1

14 pages, 2529 KiB  
Article
WISP2/CCN5 Suppresses Vasculogenic Mimicry through Inhibition of YAP/TAZ Signaling in Breast Cancer Cells
by Nathalie Ferrand, Aude Fert, Romain Morichon, Nina Radosevic-Robin, Maurice Zaoui and Michèle Sabbah
Cancers 2022, 14(6), 1487; https://doi.org/10.3390/cancers14061487 - 14 Mar 2022
Cited by 6 | Viewed by 3313
Abstract
Vasculogenic mimicry (VM) formed by aggressive tumor cells to create vascular networks connected with the endothelial cells, plays an important role in breast cancer progression. WISP2 has been considered as a tumor suppressor protein; however, the relationship between WISP2 and VM formation remains [...] Read more.
Vasculogenic mimicry (VM) formed by aggressive tumor cells to create vascular networks connected with the endothelial cells, plays an important role in breast cancer progression. WISP2 has been considered as a tumor suppressor protein; however, the relationship between WISP2 and VM formation remains unclear. We used the in vitro tube formation assay and in vivo immunohistochemical analysis in a mouse model, and human breast tumors were used to evaluate the effect of WISP2 on VM formation. Here we report that WISP2 acts as a potent inhibitor of VM formation in breast cancer. Enforced expression of WISP2 decreased network formation while knockdown of WISP2 increased VM. Mechanistically, WISP2 increased retention of oncogenic activators YAP/TAZ in cytoplasm, leading to decreased expression of the angiogenic factor CYR61. Studies using an in vivo mouse model and human breast tumors confirmed the in vitro cell lines data. In conclusion, our results indicate that WISP2 may play a critical role in VM and highlight the critical role of WISP2 as a tumor suppressor. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

12 pages, 1066 KiB  
Review
Metabolic Effects of CCN5/WISP2 Gene Deficiency and Transgenic Overexpression in Mice
by Tara Alami and Jun-Li Liu
Int. J. Mol. Sci. 2021, 22(24), 13418; https://doi.org/10.3390/ijms222413418 - 14 Dec 2021
Cited by 8 | Viewed by 4064
Abstract
CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic β-cells and thus improve the metabolic profile of the [...] Read more.
CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic β-cells and thus improve the metabolic profile of the animals. More recently, the roles of endogenous expression of CCN5 and its ectopic, transgenic overexpression on metabolic regulation have been revealed through two reports. Here, we attempt to compare the experimental findings from those studies, side-by-side, in order to further establish its roles in metabolic regulation. Prominent among the discoveries was that a systemic deficiency of CCN5 gene expression caused adipocyte hypertrophy, increased adipogenesis, and lipid accumulation, resulting in insulin resistance and glucose intolerance, which were further exacerbated upon high-fat diet feeding. On the other hand, the adipocyte-specific and systemic overexpression of CCN5 caused an increase in lean body mass, improved insulin sensitivity, hyperplasia of cardiomyocytes, and increased heart mass, but decreased fasting glucose levels. CCN5 is clearly a regulator of adipocyte proliferation and maturation, affecting lean/fat mass ratio and insulin sensitivity. Not all results from these models are consistent; moreover, several important aspects of CCN5 physiology are yet to be explored. Full article
(This article belongs to the Special Issue Recent Advances in Molecular Research of Metabolic Disorders)
Show Figures

Figure 1

14 pages, 2031 KiB  
Article
Hepatic Wnt1 Inducible Signaling Pathway Protein 1 (WISP-1/CCN4) Associates with Markers of Liver Fibrosis in Severe Obesity
by Olga Pivovarova-Ramich, Jennifer Loske, Silke Hornemann, Mariya Markova, Nicole Seebeck, Anke Rosenthal, Frederick Klauschen, José Pedro Castro, René Buschow, Tilman Grune, Volker Lange, Natalia Rudovich and D. Margriet Ouwens
Cells 2021, 10(5), 1048; https://doi.org/10.3390/cells10051048 - 29 Apr 2021
Cited by 14 | Viewed by 6449
Abstract
Liver fibrosis is a critical complication of obesity-induced fatty liver disease. Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4), a novel adipokine associated with visceral obesity and insulin resistance, also contributes to lung and kidney fibrosis. The aim of the present study was to [...] Read more.
Liver fibrosis is a critical complication of obesity-induced fatty liver disease. Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4), a novel adipokine associated with visceral obesity and insulin resistance, also contributes to lung and kidney fibrosis. The aim of the present study was to investigate the role of CCN4 in liver fibrosis in severe obesity. For this, human liver biopsies were collected from 35 severely obese humans (BMI 42.5 ± 0.7 kg/m2, age 46.7 ± 1.8 y, 25.7% males) during bariatric surgery and examined for the expression of CCN4, fibrosis, and inflammation markers. Hepatic stellate LX-2 cells were treated with human recombinant CCN4 alone or in combination with LPS or transforming growth factor beta (TGF-β) and examined for fibrosis and inflammation markers. CCN4 mRNA expression in the liver positively correlated with BMI and expression of fibrosis markers COL1A1, COL3A1, COL6A1, αSMA, TGFB1, extracellular matrix turnover enzymes TIMP1 and MMP9, and the inflammatory marker ITGAX/CD11c. In LX-2 cells, the exposure to recombinant CCN4 caused dose-dependent induction of MMP9 and MCP1. CCN4 potentiated the TGF-β-mediated induction of COL3A1, TIMP1, and MCP1 but showed no interaction with LPS treatment. Our results suggest a potential contribution of CCN4 to the early pathogenesis of obesity-associated liver fibrosis. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of NAFLD and HCC)
Show Figures

Figure 1

13 pages, 703 KiB  
Review
Targeting CCN Proteins in Rheumatoid Arthritis and Osteoarthritis
by Iona J. MacDonald, Chien-Chung Huang, Shan-Chi Liu, Yen-You Lin and Chih-Hsin Tang
Int. J. Mol. Sci. 2021, 22(9), 4340; https://doi.org/10.3390/ijms22094340 - 21 Apr 2021
Cited by 39 | Viewed by 5701
Abstract
The CCN family of matricellular proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3/CCN4-5-6) are essential players in the key pathophysiological processes of angiogenesis, wound healing and inflammation. These proteins are well recognized for their important roles in many cellular processes, including cell proliferation, adhesion, migration [...] Read more.
The CCN family of matricellular proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3/CCN4-5-6) are essential players in the key pathophysiological processes of angiogenesis, wound healing and inflammation. These proteins are well recognized for their important roles in many cellular processes, including cell proliferation, adhesion, migration and differentiation, as well as the regulation of extracellular matrix differentiation. Substantial evidence implicates four of the proteins (CCN1, CCN2, CCN3 and CCN4) in the inflammatory pathologies of rheumatoid arthritis (RA) and osteoarthritis (OA). A smaller evidence base supports the involvement of CCN5 and CCN6 in the development of these diseases. This review focuses on evidence providing insights into the involvement of the CCN family in RA and OA, as well as the potential of the CCN proteins as therapeutic targets in these diseases. Full article
(This article belongs to the Special Issue Research of Pathogenesis and Novel Therapeutics in Arthritis 3.0)
Show Figures

Figure 1

7 pages, 286 KiB  
Review
An Update to the WISP-1/CCN4 Role in Obesity, Insulin Resistance and Diabetes
by Małgorzata Mirr and Maciej Owecki
Medicina 2021, 57(2), 100; https://doi.org/10.3390/medicina57020100 - 23 Jan 2021
Cited by 8 | Viewed by 2856
Abstract
Insulin resistance refers to the diminished response of peripheral tissues to insulin and is considered the major risk factor for type 2 diabetes. Although many possible mechanisms have been reported to develop insulin resistance, the exact underlying processes remain unclear. In recent years, [...] Read more.
Insulin resistance refers to the diminished response of peripheral tissues to insulin and is considered the major risk factor for type 2 diabetes. Although many possible mechanisms have been reported to develop insulin resistance, the exact underlying processes remain unclear. In recent years, the role of adipose tissue as a highly active metabolic and endocrine organ, producing proteins called adipokines and their multidirectional activities has gained interest. The physiological effects of adipokines include energy homeostasis and insulin sensitivity regulation. In addition, an excess of adipose tissue is followed by proinflammatory state which results in dysregulation of secreted cytokines contributing to insulin resistance. Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP-1), also known as CCN4, has recently been described as a novel adipokine, whose circulating levels are elevated in obese and insulin resistant individuals. Growing evidence suggests that WISP-1 may participate in the impaired glucose homeostasis. In this review, we characterize WISP-1 and summarize the latest reports on the role of WISP-1 in obesity, insulin resistance and type 2 diabetes. Full article
(This article belongs to the Special Issue Glucose Homeostasis)
Back to TopTop