Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Urmia saltwater lake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3542 KiB  
Article
Geotechnical Properties of Urmia Saltwater Lake Bed Sediments
by Davood Akbarimehr, Mohammad Rahai, Majid Ahmadpour and Yong Sheng
Geotechnics 2025, 5(1), 1; https://doi.org/10.3390/geotechnics5010001 - 31 Dec 2024
Cited by 2 | Viewed by 1318
Abstract
Urmia Lake (UL) is the sixth-largest saltwater lake in the world; however, there is a dearth of geotechnical studies on this region. Geotechnical characteristics of a site are considered important from different engineering perspectives. In this research, the results of 255 laboratory tests [...] Read more.
Urmia Lake (UL) is the sixth-largest saltwater lake in the world; however, there is a dearth of geotechnical studies on this region. Geotechnical characteristics of a site are considered important from different engineering perspectives. In this research, the results of 255 laboratory tests and the data of 55 in situ tests were used to determine the geotechnical properties of sediment in UL. The changes of parameters in depth are presented in this study. The results indicate that compressibility, initial void ratio, water content, over-consolidated ratio (OCR), and sensitivity have larger values near the lake bed. Moreover, increasing the sediment depth leads to significant reductions in these values. According to the sediment strength analysis through the vane shear and standard penetration tests and the unit weight of sediments, there is an increasing trend caused by the increased depths of layers. Diverse applied correlations are proposed and can be used as preliminary estimates in similar types of sediments in engineering projects as well as scientific studies. Furthermore, undrained shear strength and compression index trends in depth and the Su/σ’v Curve against OCR are compared with the literature, and the results reveal similar trends in similar sediments. The main minerals identified in these sediments include calcite, dolomite, quartz, calcium chloride, and halite. The salinity of the lake water is caused by the presence of calcium chloride and halite minerals. The Cao factor observed in chemical compounds can have a significant impact on the cohesion of the soil particles. This research provides comprehensive information on the geotechnical characteristics of UL. Moreover, the results of this study show that UL Sediments are soft and sensitive, especially in shallow depths, and they contain a significant amount of organic content; therefore, it is recommended to use suitable improvement methods in future geotechnical and structural designs. This study and similar surveys can help prepare the groundwork for designing safer marine structures. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

22 pages, 7901 KiB  
Article
Investigating the Impact of Large Lakes on Local Precipitation: Case Study of Lake Urmia, Iran
by Hossein Mousavi, Amir Hossein Dehghanipour, Carla S.S. Ferreira and Zahra Kalantari
Water 2024, 16(9), 1250; https://doi.org/10.3390/w16091250 - 27 Apr 2024
Viewed by 2186
Abstract
Large lakes face considerable challenges due to human activities and climate change, impacting local weather conditions and ecosystem sustainability. Lake Urmia, Iran’s largest lake and the world’s second-largest saltwater lake, has undergone a substantial reduction in water levels, primarily due to drought, climate [...] Read more.
Large lakes face considerable challenges due to human activities and climate change, impacting local weather conditions and ecosystem sustainability. Lake Urmia, Iran’s largest lake and the world’s second-largest saltwater lake, has undergone a substantial reduction in water levels, primarily due to drought, climate change, and excessive irrigation. This study focuses on the potential repercussions on local climate conditions, particularly investigating the impact of moisture sources, evaporation from lake surfaces, and evapotranspiration from agricultural activities, on local convection rainfall. The prevailing westerly winds in the basin suggest a hypothesis that this moisture is transported eastward within the basin, potentially leading to local precipitation as it ascends to higher altitudes near the eastern basin border. To validate this hypothesis, climate data from 1986 to 2017 from the Sarab meteorological station (east of the lake basin, influenced by local precipitation) and Saqez meteorological station (south of the basin, unaffected by local precipitation) were analyzed. The impact of lake water level reduction was assessed by categorizing data into periods of normal lake conditions (1986–1995) and water level reduction (1996–2017). Additionally, the MSWEP global precipitation product was used to examine the precipitation distribution in the entire basin over the entire period and sub-periods. The findings indicate Lake Urmia’s significant influence on convective rainfall in the eastern basin, especially during the summer. Despite decreasing lake levels from 1996 to 2017, convective rainfall in the eastern basin increased during the summer, suggesting intensified agricultural irrigation, particularly in hot seasons. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

15 pages, 5420 KiB  
Article
Effects of Water Level Decline in Lake Urmia, Iran, on Local Climate Conditions
by Amir Hossein Dehghanipour, Davood Moshir Panahi, Hossein Mousavi, Zahra Kalantari and Massoud Tajrishy
Water 2020, 12(8), 2153; https://doi.org/10.3390/w12082153 - 30 Jul 2020
Cited by 36 | Viewed by 6400
Abstract
Lake Urmia in northwestern Iran is the largest lake in Iran and the second largest saltwater lake in the world. The water level in Lake Urmia has decreased dramatically in recent years, due to drought, climate change, and the overuse of water resources [...] Read more.
Lake Urmia in northwestern Iran is the largest lake in Iran and the second largest saltwater lake in the world. The water level in Lake Urmia has decreased dramatically in recent years, due to drought, climate change, and the overuse of water resources for irrigation. This shrinking of the lake may affect local climate conditions, assuming that the lake itself affects the local climate. In this study, we quantified the lake’s impact on the local climate by analyzing hourly time series of data on climate variables (temperature, vapor pressure, relative humidity, evaporation, and dewpoint temperature for all seasons, and local lake/land breezes in summer) for the period 1961–2016. For this, we compared high quality, long-term climate data obtained from Urmia and Saqez meteorological stations, located 30 km and 185 km from the lake center, respectively. We then investigated the effect of lake level decrease on the climate variables by dividing the data into periods 1961–1995 (normal lake level) and 1996–2016 (low lake level). The results showed that at Urmia station (close to the lake), climate parameters displayed fewer fluctuations and were evidently affected by Lake Urmia compared with those at Saqez station. The effects of the lake on the local climate increased with increasing temperature, with the most significant impact in summer and the least in winter. The results also indicated that, despite decreasing lake level, local climate conditions are still influenced by Lake Urmia, but to a lesser extent. Full article
(This article belongs to the Special Issue Impact of Land-Use Changes on Surface Hydrology and Water Quality)
Show Figures

Figure 1

Back to TopTop