Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Ulleung Basin Gas Hydrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4653 KiB  
Article
Assessment of Production Performance and Uncertainty in the UBGH2-6 Gas Hydrate Reservoir, Ulleung Basin
by Youngmin Kim and Wonsuk Lee
J. Mar. Sci. Eng. 2024, 12(5), 748; https://doi.org/10.3390/jmse12050748 - 29 Apr 2024
Viewed by 1289
Abstract
This study delineates the intricate dynamics of gas hydrate production in the UBGH2-6 reservoir, located in the Ulleung Basin, by deploying a comprehensive simulation model. By integrating a sensitivity analysis with Latin hypercube sampling-based Monte Carlo simulations, we evaluated the influences on gas [...] Read more.
This study delineates the intricate dynamics of gas hydrate production in the UBGH2-6 reservoir, located in the Ulleung Basin, by deploying a comprehensive simulation model. By integrating a sensitivity analysis with Latin hypercube sampling-based Monte Carlo simulations, we evaluated the influences on gas and water production and explored the underlying uncertainties within this gas hydrate reservoir. The simulation model revealed significant findings, including the production of approximately 440 t of gas and 34,240 t of water, facilitated by a depressurization strategy at 9 MPa for a year. This highlights the pivotal roles of porosity, permeability, and thermal properties in enhancing production rates and influencing hydrate dissociation processes. Sensitivity analysis of 19 parameters provides insights into their impact on production, identifying the key drivers of increased production rates. Furthermore, uncertainty analysis examined 300 reservoir models, utilizing statistical percentiles to quantify uncertainties, projecting a median gas production of approximately 455 t. This study identifies critical factors affecting gas hydrate production and offers valuable insights for future exploration and exploitation strategies, making a significant contribution to the field of gas hydrate research. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

26 pages, 6233 KiB  
Article
Generation of Synthetic Compressional Wave Velocity Based on Deep Learning: A Case Study of Ulleung Basin Gas Hydrate in the Republic of Korea
by Minsoo Ji, Seoyoon Kwon, Min Kim, Sungil Kim and Baehyun Min
Appl. Sci. 2022, 12(17), 8775; https://doi.org/10.3390/app12178775 - 31 Aug 2022
Cited by 3 | Viewed by 2103
Abstract
This study proposes a deep-learning-based model to generate synthetic compressional wave velocity (Vp) from well-logging data with application to the Ulleung Basin Gas Hydrate (UBGH) in the East Sea, Republic of Korea. Because a bottom-simulating reflector (BSR) is a key indicator to define [...] Read more.
This study proposes a deep-learning-based model to generate synthetic compressional wave velocity (Vp) from well-logging data with application to the Ulleung Basin Gas Hydrate (UBGH) in the East Sea, Republic of Korea. Because a bottom-simulating reflector (BSR) is a key indicator to define the presence of gas hydrate, this study generates the Vp for identifying the BSR by detecting the morphology of the hydrate in terms of the change in acoustic velocity. Conventional easy-to-acquire logging parameters, such as gamma-ray, neutron porosity, bulk density, and photoelectric absorption, were selected as model inputs based on a sensitivity analysis. Long short-term memory (LSTM) and an artificial neural network (ANN) were used to design an efficient learning-based predictive model with sensitivity analysis for hyperparameters. The LSTM model outperforms the ANN model by preserving the geological sequence of the well-logging data. Ten-fold cross-validation was conducted to verify the consistency of the LSTM model and yielded satisfactory results, with an average coefficient of determination greater than 0.8. These numerical results imply that generating synthetic well-logging via deep learning can accurately estimate missing well-logging data, contributing to the reservoir characterization of gas-hydrate-bearing sediments. Full article
Show Figures

Figure 1

22 pages, 3694 KiB  
Article
Integration of Electromagnetic Geophysics Forward Simulation in Coupled Flow and Geomechanics for Monitoring a Gas Hydrate Deposit Located in the Ulleung Basin, East Sea, Korea
by Hyun Chul Yoon, Jihoon Kim, Evan Schankee Um and Joo Yong Lee
Energies 2022, 15(10), 3823; https://doi.org/10.3390/en15103823 - 23 May 2022
Cited by 1 | Viewed by 2355
Abstract
We investigate the feasibility of electromagnetic (EM) geophysics methods to detect the dissociation of gas hydrate specifically from a gas hydrate deposit located in the Ulleung Basin, East Sea, Korea via an integrated flow-geomechanics-EM geophysics simulation. To this end, coupled flow and geomechanics [...] Read more.
We investigate the feasibility of electromagnetic (EM) geophysics methods to detect the dissociation of gas hydrate specifically from a gas hydrate deposit located in the Ulleung Basin, East Sea, Korea via an integrated flow-geomechanics-EM geophysics simulation. To this end, coupled flow and geomechanics simulation is first performed with the multiple porosity model employed, where a mixed formulation with the finite volume (FV) and finite element (FE) methods are taken for the flow and geomechanics, respectively. From the saturation and porosity fields obtained from the coupled flow and geomechanics, the electrical conductivity model is established for the EM simulation. Solving the partial differential equation of electrical diffusion which is linearized using the 3D finite element method (FEM), the EM fields are then computed. For numerical experiments, particularly two approaches in the configuration for the EM methods are compared in this contribution: the surface-to-surface and the surface-to-borehole methods. When the surface-to-surface EM method is employed, the EM is found to be less sensitive, implying low detectability. Especially for the short term of production, the low detectability is attributed to the similarity of electrical resistivity between the dissociated gas (CH4) and hydrate as well as the specific dissociation pattern within the intercalated composites of the field. On the other hand, when the surface-to-borehole EM method is employed, its sensitivity to capture the produced gas flow is improved, confirming its detectability in monitoring gas flow. Hence, the EM geophysics simulation integrated with coupled flow and geomechanics can be a potential tool for monitoring gas hydrate deposits. Full article
Show Figures

Figure 1

17 pages, 12105 KiB  
Article
Geomechanically Sustainable Gas Hydrate Production Using a 3D Geological Model in the Ulleung Basin of the Korean East Sea
by Taehun Lee, Hanam Son, Jooyong Lee, Taewoong Ahn and Nyeonkeon Kang
Energies 2022, 15(7), 2569; https://doi.org/10.3390/en15072569 - 1 Apr 2022
Cited by 3 | Viewed by 2143
Abstract
Although various simulation studies on gas hydrate production have been conducted, a single vertical well in the cylindrical system has been adopted in most research. However, this system has a limited ability to predict commercial production in gas hydrate reservoirs. In order to [...] Read more.
Although various simulation studies on gas hydrate production have been conducted, a single vertical well in the cylindrical system has been adopted in most research. However, this system has a limited ability to predict commercial production in gas hydrate reservoirs. In order to facilitate commercial production, a field-scale reservoir model with a multi-well system must be constructed using geological data, such as seismic data, well logging data, core data, etc. The depressurization method is regarded as a practical production strategy because it has high levels of production efficiency and economical effectiveness. However, this method can lead to subsidence due to the increased effective stress. In this work, we studied a production simulation strategy for commercial gas hydrate production. A three-dimensional geological model with a realistic field scale is constructed using seismic and well logging data from the Ulleung Basin of the Korean East Sea. All of the grids are refined in the I and J direction, and the grids near the production well are very small to consider realistic hydrate dissociation. The cyclic depressurization method is adopted for the increase in the geomechanical stability, rather than the non-cyclic depressurization method. Various case studies are conducted with alternating bottomhole pressures for the primary and secondary depressurization stages over 100 days. Geomechanical stability is significantly enhanced, while cumulative gas production is relatively less reduced or nearly maintained. In particular, all cases of the cumulative gas production at 6 MPa during the secondary depressurization stage are similar to the non-cyclic case, while the geomechanical stabilities of those cases are restored. This study is thought to have contributed to the development of technology for commercial gas hydrate production with a geomechanical stability study using a reservoir-scale model with a multi-well system. Full article
Show Figures

Figure 1

15 pages, 8017 KiB  
Article
Numerical Simulation of Gas Hydrate Production Using the Cyclic Depressurization Method in the Ulleung Basin of the Korea East Sea
by Taehun Lee, Joo Yong Lee, Taewoong Ahn and Han Am Son
Appl. Sci. 2021, 11(20), 9748; https://doi.org/10.3390/app11209748 - 19 Oct 2021
Cited by 11 | Viewed by 2377
Abstract
The depressurization method is known as the most productive and effective method for successful methane recovery from hydrate deposits. However, this method can cause considerable subsidence because of the increased effective stress. Maintenance of geomechanical stability is necessary for sustainable production of gas [...] Read more.
The depressurization method is known as the most productive and effective method for successful methane recovery from hydrate deposits. However, this method can cause considerable subsidence because of the increased effective stress. Maintenance of geomechanical stability is necessary for sustainable production of gas from gas hydrate deposits. In this study, the cyclic depressurization method, which uses changing the bottomhole pressure and production time during primary and secondary depressurization stage, was utilized in order to increase stability in the Ulleung Basin of the Korea East Sea. Various case studies were conducted with alternating bottomhole pressure and production time of the primary and secondary depressurization stages over 400 days. Geomechanical stability was significantly enhanced, while cumulative gas production was relatively less reduced or nearly maintained. Specially, the cumulative gas production of the 6 MPa case was more than three times higher than that of the 9 MPa case, while vertical displacement was similar between them. Therefore, it was found that the cyclic depressurization method should be applied for the sake of geomechanical stability. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

14 pages, 6392 KiB  
Article
Characterization of Thin Gas Hydrate Reservoir in Ulleung Basin with Stepwise Seismic Inversion
by Bo-Yeon Yi, Young-Ho Yoon, Young-Jun Kim, Gil-Young Kim, Yong-Hwan Joo, Nyeon-Keon Kang, Jung-Ki Kim, Jong-Hwa Chun and Dong-Geun Yoo
Energies 2021, 14(14), 4077; https://doi.org/10.3390/en14144077 - 6 Jul 2021
Cited by 3 | Viewed by 2316
Abstract
Natural gas hydrates (GHs) filling sand layer pores are the most promising GHs that can be produced via conventional mechanisms in deep-sea environments. However, the seismic tracking of such thin GH-bearing sand layers is subject to certain limitations. For example, because most GH-bearing [...] Read more.
Natural gas hydrates (GHs) filling sand layer pores are the most promising GHs that can be produced via conventional mechanisms in deep-sea environments. However, the seismic tracking of such thin GH-bearing sand layers is subject to certain limitations. For example, because most GH-bearing sand layers are thin and sparsely interbedded with mud layers, conventional seismic data with a maximum resolution of ~10 m are of limited use for describing their spatial distribution. The 2010 Ulleung Basin drilling expedition identified a relatively good GH reservoir at the UBGH2-6 site. However, the individual GH-bearing sand layers at this site are thin and cannot therefore be reliably tracked using conventional seismic techniques. This study presents a new thin layer tracking method using stepwise seismic inversion and 3D seismic datasets with two different resolutions. The high-resolution acoustic impedance volume obtained is then used to trace thin layers that cannot be harnessed with conventional methods. Moreover, we estimate the high-resolution regional GH distribution based on GH saturation derived from acoustic impedance at UBGH2-6. The thin GH layers, previously viewed as a single layer because of limited resolution, are further subdivided, traced, and characterized in terms of lateral variation. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

16 pages, 3176 KiB  
Article
Effect of Permeability on Hydrate-Bearing Sediment Productivity and Stability in Ulleung Basin, East Sea, South Korea
by Jung-Tae Kim, Chul-Whan Kang, Ah-Ram Kim, Joo Yong Lee and Gye-Chun Cho
Energies 2021, 14(6), 1752; https://doi.org/10.3390/en14061752 - 22 Mar 2021
Cited by 10 | Viewed by 3966
Abstract
Methane hydrate has attracted attention as a next-generation resource, and many researchers have conducted various studies to estimate its productivity. Numerical simulation is the optimal method for estimating methane gas productivity. Meanwhile, using a reasonable input parameter is essential for obtaining accurate numerical [...] Read more.
Methane hydrate has attracted attention as a next-generation resource, and many researchers have conducted various studies to estimate its productivity. Numerical simulation is the optimal method for estimating methane gas productivity. Meanwhile, using a reasonable input parameter is essential for obtaining accurate numerical modeling results. Permeability is a geotechnical property that exhibits the greatest impact on productivity. The permeability of hydrate-bearing sediment varies based on the sediment pore structure and hydrate saturation. In this study, an empirical permeability model was derived from experimental data using soil specimens from the Ulleung Basin, and the model was applied in numerical analysis to evaluate the sediment gas productivity and ground stability. The gas productivity and stability of hydrate-bearing sediments were compared by applying a widely used permeability model and the proposed model to a numerical model. Additionally, a parametric study was performed to examine the effects of initial hydrate saturation on the sediment gas productivity and stability. There were significant differences in the productivity and stability analysis results according to the proposed permeability model. Therefore, it was found that for accurate numerical analysis, a regional permeability model should be applied. Full article
(This article belongs to the Special Issue Sustainable Geotechnical Engineering and Its Applications)
Show Figures

Figure 1

23 pages, 5603 KiB  
Article
The Effects of Coupling Stiffness and Slippage of Interface Between the Wellbore and Unconsolidated Sediment on the Stability Analysis of the Wellbore Under Gas Hydrate Production
by Jung-Tae Kim, Ah-Ram Kim, Gye-Chun Cho, Chul-Whan Kang and Joo Yong Lee
Energies 2019, 12(21), 4177; https://doi.org/10.3390/en12214177 - 1 Nov 2019
Cited by 5 | Viewed by 2820
Abstract
Gas hydrates have great potential as future energy resources. Several productivity and stability analyses have been conducted for the Ulleung Basin, and the depressurization method is being considered for production. Under depressurization, ground settlement occurs near the wellbore and axial stress develops. For [...] Read more.
Gas hydrates have great potential as future energy resources. Several productivity and stability analyses have been conducted for the Ulleung Basin, and the depressurization method is being considered for production. Under depressurization, ground settlement occurs near the wellbore and axial stress develops. For a safe production test, it is essential to perform a stability analysis for the wellbore and hydrate-bearing sediments. In this study, the development of axial stress on the wellbore was investigated considering the coupling stiffness of the interface between the wellbore and sediment. A coupling stiffness model, which can consider both confining stress and slippage phenomena, was suggested and applied in a numerical simulation. Parametric analyses were conducted to investigate the effects of coupling stiffness and slippage on axial stress development. The results show that shear coupling stiffness has a significant effect on wellbore stability, while normal coupling stiffness has a minor effect. In addition, the maximum axial stress of the well bore has an upper limit depending on the magnitude of the confining stress, and the axial stress converges to this upper limit due to slipping at the interface. The results can be used as fundamental data for the design of wellbore under depressurization-based gas production. Full article
(This article belongs to the Special Issue Geomechanics for Energy and a Sustainable Environment)
Show Figures

Figure 1

23 pages, 12572 KiB  
Article
Geomechanical, Hydraulic and Thermal Characteristics of Deep Oceanic Sandy Sediments Recovered during the Second Ulleung Basin Gas Hydrate Expedition
by Yohan Cha, Tae Sup Yun, Young Jin Kim, Joo Yong Lee and Tae-Hyuk Kwon
Energies 2016, 9(10), 775; https://doi.org/10.3390/en9100775 - 27 Sep 2016
Cited by 27 | Viewed by 5484
Abstract
This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments [...] Read more.
This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state) friction angle under drained conditions were ~26° and ~22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ~1.4–1.6 to ~0.5–0.7 W·m−1·K−1) was observed when water saturation decreased from 100% to ~10%–20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions can be effectively used to assess sediment responses to depressurization to ensure safe gas production operations in this potential target reservoir. Full article
Show Figures

Graphical abstract

Back to TopTop