Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Tropical Storm Imelda

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6990 KB  
Article
Machine Learning-Driven Rapid Flood Mapping for Tropical Storm Imelda Using Sentinel-1 SAR Imagery
by Reda Amer
Remote Sens. 2025, 17(11), 1869; https://doi.org/10.3390/rs17111869 - 28 May 2025
Viewed by 983
Abstract
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) [...] Read more.
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) in southeastern Texas. Dual-polarization Sentinel-1 SAR data (VH and VV) were processed by computing the VH/VV backscatter ratio, and the resulting ratio image was classified using a supervised Random Forest classifier to delineate water and land. All Sentinel-1 images underwent radiometric calibration, speckle noise filtering, and terrain correction to ensure precision in flood delineation. The Random Forest classifier achieved an overall flood mapping accuracy exceeding 94%, with Cohen’s kappa coefficients of approximately 0.75–0.80, demonstrating the approach’s reliability in distinguishing transient floodwaters from permanent water bodies. The spatial distribution of flooding was strongly influenced by topography and land cover. Analysis of Shuttle Radar Topography Mission (SRTM) digital elevation data revealed that low-lying, flat terrain was most vulnerable to inundation; correspondingly, the land cover types most affected were hay/pasture, cultivated land, and emergent wetlands. Additionally, urban areas with low-intensity development experienced extensive flooding, attributed to impervious surfaces exacerbating runoff. A strong, statistically significant correlation (R2 = 0.87, p < 0.01) was observed between precipitation and flood extent, indicating that heavier rainfall led to greater inundation; accordingly, the areas with the highest rainfall totals (e.g., Jefferson and Chambers counties) experienced the most extensive flooding, as confirmed by SAR-based change detection. The proposed approach eliminates the need for manual threshold selection, thereby reducing misclassification errors due to speckle noise and land cover heterogeneity. Harnessing globally available Sentinel-1 data with near-real-time processing and a robust classifier, this approach provides a scalable solution for rapid flood monitoring. These findings underscore the potential of SAR-based flood mapping under adverse weather conditions, thereby contributing to improved disaster preparedness and resilience in flood-prone regions. Full article
Show Figures

Figure 1

23 pages, 6299 KB  
Article
Impact of Pulse Disturbances on Phytoplankton: How Four Storms of Varying Magnitude, Duration, and Timing Altered Community Responses
by Noah Claflin, Jamie L. Steichen, Darren Henrichs and Antonietta Quigg
Environments 2024, 11(10), 218; https://doi.org/10.3390/environments11100218 - 4 Oct 2024
Viewed by 1703
Abstract
Estuarine phytoplankton communities are acclimated to environmental parameters that change seasonally. With climate change, they are having to respond to extreme weather events that create dramatic alterations to ecosystem function(s) on the scale of days. Herein, we examined the short term (<1 month) [...] Read more.
Estuarine phytoplankton communities are acclimated to environmental parameters that change seasonally. With climate change, they are having to respond to extreme weather events that create dramatic alterations to ecosystem function(s) on the scale of days. Herein, we examined the short term (<1 month) shifts in phytoplankton communities associated with four pulse disturbances (Tax Day Flood in 2016, Hurricane Harvey in 2017, Tropical Storm Imelda in 2019, and Winter Storm Uri in 2021) that occurred in Galveston Bay (TX, USA). Water samples collected daily were processed using an Imaging FlowCytobot (IFCB), along with concurrent measurements of temperature, salinity, and chlorophyll-a. Stronger storm events with localized heavy precipitation and flooding had greater impacts on community composition, increasing diversity (Shannon–Weiner and Simpson Indices) while a cold wave event lowered it. Diatoms and dinoflagellates accounted for the largest fraction of the community, cyanobacteria and chlorophytes varied mostly with salinity, while euglenoids, cryptophytes, and raphidophytes, albeit at lower densities, fluctuated greatly. The unconstrained variance of the redundancy analysis models pointed to additional environmental processes than those measured being responsible for the changes observed. These findings provide insights into the impact of pulse disturbances of different magnitudes, durations, and timings on phytoplankton communities. Full article
Show Figures

Graphical abstract

16 pages, 6978 KB  
Article
Evaluation of Radar Precipitation Products and Assessment of the Gauge-Radar Merging Methods in Southeast Texas for Extreme Precipitation Events
by Wenzhao Li, Han Jiang, Dongfeng Li, Philip B. Bedient and Zheng N. Fang
Remote Sens. 2023, 15(8), 2033; https://doi.org/10.3390/rs15082033 - 12 Apr 2023
Cited by 4 | Viewed by 2472
Abstract
Many radar-gauge merging methods have been developed to produce improved rainfall data by leveraging the advantages of gauge and radar observations. Two popular merging methods, Regression Kriging and Bayesian Regression Kriging were utilized and compared in this study to produce hourly rainfall data [...] Read more.
Many radar-gauge merging methods have been developed to produce improved rainfall data by leveraging the advantages of gauge and radar observations. Two popular merging methods, Regression Kriging and Bayesian Regression Kriging were utilized and compared in this study to produce hourly rainfall data from gauge networks and multi-source radar datasets. The authors collected, processed, and modeled the gauge and radar rainfall data (Stage IV, MRMS and RTMA radar data) of the two extreme storm events (i.e., Hurricane Harvey in 2017 and Tropical Storm Imelda in 2019) occurring in the coastal area in Southeast Texas with devastating flooding. The analysis of the modeled data on consideration of statistical metrics, physical rationality, and computational expenses, implies that while both methods can effectively improve the radar rainfall data, the Regression Kriging model demonstrates its superior performance over that of the Bayesian Regression Kriging model since the latter is found to be prone to overfitting issues due to the clustered gauge distributions. Moreover, the spatial resolution of rainfall data is found to affect the merging results significantly, where the Bayesian Regression Kriging model works unskillfully when radar rainfall data with a coarser resolution is used. The study recommends the use of high-quality radar data with properly spatial-interpolated gauge data to improve the radar-gauge merging methods. The authors believe that the findings of the study are critical for assisting hazard mitigation and future design improvement. Full article
(This article belongs to the Special Issue Hydrometeorological Hazards in the USA and Europe)
Show Figures

Figure 1

18 pages, 12545 KB  
Article
Performance Evaluation of IMERG GPM Products during Tropical Storm Imelda
by Salman Sakib, Dawit Ghebreyesus and Hatim O. Sharif
Atmosphere 2021, 12(6), 687; https://doi.org/10.3390/atmos12060687 - 27 May 2021
Cited by 21 | Viewed by 4527
Abstract
Tropical Storm Imelda struck the southeast coastal regions of Texas from 17–19 September, 2019, and delivered precipitation above 500 mm over about 6000 km2. The performance of the three IMERG (Early-, Late-, and Final-run) GPM satellite-based precipitation products was evaluated against [...] Read more.
Tropical Storm Imelda struck the southeast coastal regions of Texas from 17–19 September, 2019, and delivered precipitation above 500 mm over about 6000 km2. The performance of the three IMERG (Early-, Late-, and Final-run) GPM satellite-based precipitation products was evaluated against Stage-IV radar precipitation estimates. Basic and probabilistic statistical metrics, such as CC, RSME, RBIAS, POD, FAR, CSI, and PSS were employed to assess the performance of the IMERG products. The products captured the event adequately, with a fairly high POD value of 0.9. The best product (Early-run) showed an average correlation coefficient of 0.60. The algorithm used to produce the Final-run improved the quality of the data by removing systematic errors that occurred in the near-real-time products. Less than 5 mm RMSE error was experienced in over three-quarters (ranging from 73% to 76%) of the area by all three IMERG products in estimating the Tropical Storm Imelda. The Early-run product showed a much better RBIAS relatively to the Final-run product. The overall performance was poor, as areas with an acceptable range of RBIAS (i.e., between −10% and 10%) in all the three IMERG products were only 16% to 17% of the total area. Overall, the Early-run product was found to be better than Late- and Final-run. Full article
(This article belongs to the Special Issue Weather Conditions Triggering Floods)
Show Figures

Figure 1

Back to TopTop