Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Triticum turgidum L. var. durum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2139 KiB  
Article
Composted Sludge and Trichoderma harzianum T-22 as a Dual Strategy to Enhance Wheat Growth and Soil Microbial Diversity
by Pilar Mañas and Jorge De las Heras
Environments 2025, 12(5), 145; https://doi.org/10.3390/environments12050145 - 1 May 2025
Viewed by 793
Abstract
This study evaluated the effects of Trichoderma harzianum strain T-22 on wheat (Triticum turgidum L. var. Durum, cv. Vitron) growth and soil microbial dynamics. Three inoculation levels (I0, I1, and I2) were applied to different soil substrates: Villacañas soil (V), Quero soil [...] Read more.
This study evaluated the effects of Trichoderma harzianum strain T-22 on wheat (Triticum turgidum L. var. Durum, cv. Vitron) growth and soil microbial dynamics. Three inoculation levels (I0, I1, and I2) were applied to different soil substrates: Villacañas soil (V), Quero soil (Q), and composted sewage sludge (C) from Alcázar de San Juan. Over six months, soil physicochemical properties, fungal diversity, and plant development were analyzed. The results showed that Trichoderma significantly increased fungal diversity, particularly in compost-amended substrates. In treatments with composted sludge and Trichoderma (CVI2 and CQI2), Trichoderma colonization reached up to 112,000 propagules/g, enhancing microbial activity. Higher shoot biomass and spike weight were observed when combining compost with Trichoderma since it improved nutrient availability and plant growth. Additionally, Trichoderma inoculation reduced the presence of pathogenic fungi such as Helminthosporium and Fusarium, reinforcing its biocontrol potential. However, high salinity of the soil limited microbial proliferation and plant performance. In conclusion, composted sludge and Trichoderma improved soil microbiota, enhanced wheat growth, and increased resistance against pathogens. The results highlight the potential of Trichoderma as a sustainable alternative to chemical treatments in crop production. Further studies should further investigate field-scale applications to validate these findings under real agricultural conditions. Full article
Show Figures

Figure 1

13 pages, 7911 KiB  
Article
Developing a Clean Labelled Snack Bar Rich in Protein and Fibre with Dry-Fractionated Defatted Durum Wheat Cake
by Giacomo Squeo, Vittoria Latrofa, Francesca Vurro, Davide De Angelis, Francesco Caponio, Carmine Summo and Antonella Pasqualone
Foods 2023, 12(13), 2547; https://doi.org/10.3390/foods12132547 - 29 Jun 2023
Cited by 6 | Viewed by 3402
Abstract
The shift towards a vegetarian, vegan, or flexitarian diet has increased the demand for vegetable protein and plant-based foods. The defatted cake generated during the extraction of lipids from durum wheat (Triticum turgidum L. var. durum) milling by-products is a protein [...] Read more.
The shift towards a vegetarian, vegan, or flexitarian diet has increased the demand for vegetable protein and plant-based foods. The defatted cake generated during the extraction of lipids from durum wheat (Triticum turgidum L. var. durum) milling by-products is a protein and fibre-containing waste, which could be upcycled as a food ingredient. This study aimed to exploit the dry-fractionated fine fraction of defatted durum wheat cake (DFFF) to formulate a vegan, clean labelled, cereal-based snack bar. The design of experiments (DoEs) for mixtures was applied to formulate a final product with optimal textural and sensorial properties, which contained 10% DFFF, 30% glucose syrup, and a 60% mix of puffed/rolled cereals. The DFFF-enriched snack bar was harder compared to the control without DFFF (cutting stress = 1.2 and 0.52 N/mm2, and fracture stress = 12.9 and 9.8 N/mm2 in the DFFF-enriched and control snack bar, respectively), due to a densifying effect of DFFF, and showed a more intense yellow hue due to the yellow–brownish colour of DFFF. Another difference was in the caramel flavour, which was more intense in the DFFF-enriched snack bar. The nutritional claims “low fat” and “source of fibre” were applicable to the DFFF-enriched snack bar according to EC Reg. 1924/06. Full article
Show Figures

Graphical abstract

14 pages, 2057 KiB  
Article
Genetic Gains in Grain Yield and Agronomic Traits of Argentinian Durum Wheat from 1934 to 2015
by Ana Laura Achilli, Pablo Federico Roncallo and Viviana Echenique
Agronomy 2022, 12(9), 2151; https://doi.org/10.3390/agronomy12092151 - 10 Sep 2022
Cited by 6 | Viewed by 2424
Abstract
Understanding the basis of genetic gains in grain yield and yield-related traits is essential for designing future breeding strategies that lead to the development of higher-yielding wheat cultivars. The objectives of this study were to assess the changes in grain yield achieved by [...] Read more.
Understanding the basis of genetic gains in grain yield and yield-related traits is essential for designing future breeding strategies that lead to the development of higher-yielding wheat cultivars. The objectives of this study were to assess the changes in grain yield achieved by durum wheat breeding in Argentina and to identify the agronomic traits associated with these changes. To this end, a wide set of Argentinian cultivars was analyzed in three field trials. A significant linear trend (R2 = 0.55) was observed between the grain yield and the cultivar’s release year, with an increase of 26.94 kg ha−1 yr−1 from 1934 to 2015. The harvest index and grain number were key traits that explained the increases in grain yield. The number of grains per plant increased with the cultivar’s release year, while the thousand kernel weight remained unchanged. The grain yield showed an increase of 51% when comparing old cultivars (<1980) with intermediate ones (1980–1999), whereas the increase between intermediate and modern cultivars (2000+) was only 16%. Thus, the genetic gains were mostly associated with the incorporation of semi-dwarfism into the germplasm in the 1980s, with low genetic gains after that. Full article
Show Figures

Figure 1

11 pages, 883 KiB  
Article
Genome-Wide Association Study Identifies Two Loci for Stripe Rust Resistance in a Durum Wheat Panel from Iran
by Ali Ashraf Mehrabi, Brian J. Steffenson, Alireza Pour-Aboughadareh, Oadi Matny and Mahbubjon Rahmatov
Appl. Sci. 2022, 12(10), 4963; https://doi.org/10.3390/app12104963 - 13 May 2022
Cited by 6 | Viewed by 7448
Abstract
Stripe rust (Puccinia striiformis f. sp. tritici (Pst)) is one of the most devastating fungal diseases of durum wheat (Triticum turgidum L. var. durum Desf.). Races of Pst with new virulence combinations are emerging more regularly on wheat-growing continents, [...] Read more.
Stripe rust (Puccinia striiformis f. sp. tritici (Pst)) is one of the most devastating fungal diseases of durum wheat (Triticum turgidum L. var. durum Desf.). Races of Pst with new virulence combinations are emerging more regularly on wheat-growing continents, which challenges wheat breeding for resistance. This study aimed to identify and characterize resistance to Pst races based on a genome-wide association study. GWAS is an approach to analyze the associations between a genome-wide set of single-nucleotide polymorphisms (SNPs) and target phenotypic traits. A total of 139 durum wheat accessions from Iran were evaluated at the seedling stage against isolates Pstv-37 and Pstv-40 of Pst and then genotyped using a 15K SNP chip. In total, 230 significant associations were identified across 14 chromosomes, of which 30 were associated with resistance to both isolates. Furthermore, 17 durum wheat landraces showed an immune response against both Pst isolates. The SNP markers and resistant accessions identified in this study may be useful in programs breeding durum wheat for stripe rust resistance. Full article
Show Figures

Figure 1

21 pages, 1490 KiB  
Article
Biopriming of Durum Wheat Seeds with Endophytic Diazotrophic Bacteria Enhances Tolerance to Fusarium Head Blight and Salinity
by Adel Hadj Brahim, Manel Ben Ali, Lobna Daoud, Mouna Jlidi, Ismahen Akremi, Houda Hmani, Naser Aliye Feto and Mamdouh Ben Ali
Microorganisms 2022, 10(5), 970; https://doi.org/10.3390/microorganisms10050970 - 5 May 2022
Cited by 21 | Viewed by 3961
Abstract
There is growing interest in the use of bio inoculants based on plant growth-promoting bacteria (PGPB) to promote plant growth under biotic and abiotic stresses. Here, we provided a detailed account of the effectiveness of a number of endophytic PGPB strains, isolated from [...] Read more.
There is growing interest in the use of bio inoculants based on plant growth-promoting bacteria (PGPB) to promote plant growth under biotic and abiotic stresses. Here, we provided a detailed account of the effectiveness of a number of endophytic PGPB strains, isolated from the roots of the halophyte Salicornia brachiata in promoting durum wheat growth and enhancing its tolerance to salinity and fusarium head blight (FHB) disease. Bacillus spp. strains MA9, MA14, MA17, and MA19 were found to have PGPB characteristics as they produced indole-3-acetic acid, siderophores, and lytic enzymes, fixed free atmospheric nitrogen, and solubilized inorganic phosphate in vitro. Additionally, the in vivo study that involved in planta inoculation assays under control and stress conditions indicated that all PGPB strains significantly (p < 0.05) increased the total plant length, dry weight, root area, seed weight, and nitrogen, protein, and mineral contents. Particularly, the MA17 strain showed a superior performance since it was the most efficient in reducing disease incidence in wheat explants by 64.5%, in addition to having the strongest plant growth promotion activity under salt stress. Both in vitro and in vivo assays showed that MA9, MA14, MA17, and MA19 strains were able to play significant PGPB roles. However, biopriming with Bacillus subtilis MA17 offered the highest plant growth promotion and salinity tolerance, and bioprotection against FHB. Hence, it would be worth testing the MA17 strain under field conditions as a step towards its commercial production. Moreover, the strain could be further assessed for its plausible role in bioprotection and growth promotion in other crop plants. Thus, it was believed that the strain has the potential to significantly contribute to wheat production in arid and semi-arid regions, especially the salt-affected Middle Eastern Region, in addition to its potential role in improving wheat production under biotic and abiotic stresses in other parts of the world. Full article
(This article belongs to the Special Issue Endophytes for Managing Biotic and Abiotic Stress in Plants)
Show Figures

Figure 1

11 pages, 864 KiB  
Article
Use of Wild Relatives in Durum Wheat (Triticum turgidum L. var. durum Desf.) Breeding Program: Adaptation and Stability in Context of Contrasting Environments in Tunisia
by Sourour Ayed, Imen Bouhaouel, Afef Othmani and Filippo Maria Bassi
Agronomy 2021, 11(9), 1782; https://doi.org/10.3390/agronomy11091782 - 6 Sep 2021
Cited by 15 | Viewed by 3769
Abstract
In Mediterranean regions, the performance of durum wheat (Triticum turgidum L. var. durum Desf.) yield often varies due to significant genotype × environment interaction (GEI); therefore, yield stability is an important consideration in breeding programs. The aim of this research was to [...] Read more.
In Mediterranean regions, the performance of durum wheat (Triticum turgidum L. var. durum Desf.) yield often varies due to significant genotype × environment interaction (GEI); therefore, yield stability is an important consideration in breeding programs. The aim of this research was to explore the GEI pattern and yield stability of 24 promising durum wheat lines, selected by ICARDA in several African countries (seven elites, four commercial varieties, and 13 durum wheat wide crosses, generated by hybridization of elites and Triticum dicoccoides Koern. ex Schweinf., Triticum araraticum Jakubz, and Aegilops speltoides Tausch) against a Tunisian local check variety ‘Salim’. Yield assessment was conducted across six environments under rainfed conditions, at the field station of Kef in a semi-arid region during four cropping seasons (2014–2015, 2015–2016, 2016–2017, and 2017–2018) and in a sub-humid region at the station of Beja during two cropping seasons (2015–2016 and 2018–2019). The analysis of variance showed that the environment is the main source of variation of grain yield (72.05%), followed by the interaction environments × genotypes (25.33%) and genotypes (2.62%). The genotype × genotype by environment model (PC) based on grain yield identified a mega-environment including Kef (2016–2017 and 2017–2018) and Beja (2015–2016 and 2018–2019) and elite line 22 as a widely adapted genotype. Combined analysis, computed using the average grain yield of lines and the yield stability wide adaptation index (AWAI), showed that elite lines 9 and 23 (2.41 and 2.34 t·ha−1, respectively), and wild relative-derived lines, 5, 1, and 10 (2.37, 2.31, and 2.28 t·ha−1, respectively) were more stable and better yielding than the national reference (2.21 t·ha−1). This finding supports the good yield potential of wild relative-derived lines. The five selections are recommended to be developed in multi-environments in several regions of Tunisia, especially in semi-arid area. Full article
(This article belongs to the Special Issue Utilizing Genetic Resources for Agronomic Traits Improvement)
Show Figures

Figure 1

24 pages, 5300 KiB  
Article
Biosolids Benefit Yield and Nitrogen Uptake in Winter Cereals without Excess Risk of N Leaching
by Silvia Pampana, Alessandro Rossi and Iduna Arduini
Agronomy 2021, 11(8), 1482; https://doi.org/10.3390/agronomy11081482 - 26 Jul 2021
Cited by 11 | Viewed by 2667
Abstract
Winter cereals are excellent candidates for biosolid application because their nitrogen (N) requirement is high, they are broadly cultivated, and their deep root system efficiently takes up mineral N. However, potential N leaching from BS application can occur in Mediterranean soils. A two-year [...] Read more.
Winter cereals are excellent candidates for biosolid application because their nitrogen (N) requirement is high, they are broadly cultivated, and their deep root system efficiently takes up mineral N. However, potential N leaching from BS application can occur in Mediterranean soils. A two-year study was conducted to determine how biosolids affect biomass and grain yield as well as N uptake and N leaching in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. var. durum), and oat (Avena byzantina C. Koch). Cereals were fertilized at rates of 5, 10, and 15 Mg ha−1 dry weight (called B5, B10, and B15, respectively) of biosolids (BS). Mineral-fertilized (MF) and unfertilized (C) controls were included. Overall, results highlight that BS are valuable fertilizers for winter cereals as these showed higher yields with BS as compared to control. Nevertheless, whether 5 Mg ha−1 of biosolids could replace mineral fertilization still depended on the particular cereal due to the different yield physiology of the crops. Moreover, nitrate leaching from B5 was comparable to MF, and B15 increased the risk by less than 30 N-NO3 kg ha−1. We therefore concluded that with specific rate settings, biosolid application can sustain yields of winter cereals without significant additional N leaching as compared to MF. Full article
Show Figures

Figure 1

17 pages, 965 KiB  
Article
Do Flavonoids from Durum Wheat Contribute to Its Bioactive Properties? A Prospective Study
by Adriano Costa de Camargo, Anna Paula de Souza Silva, Jackeline Cintra Soares, Severino Matias de Alencar, Cíntia Ladeira Handa, Karina Silva Cordeiro, Marcela Souza Figueira, Geni R. Sampaio, Elizabeth A. F. S. Torres, Fereidoon Shahidi and Andrés R. Schwember
Molecules 2021, 26(2), 463; https://doi.org/10.3390/molecules26020463 - 17 Jan 2021
Cited by 10 | Viewed by 4201
Abstract
A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were [...] Read more.
A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were evaluated in this contribution. The highest recovery of phenolics was achieved using aqueous acetone (50:50, v/v), as verified by multi-response optimization, thus showing that phenolics could be largely underestimated by employing an inappropriate extraction. The concentration of derivatives of apigenin, the main phenolics present, ranged from 63.5 to 80.7%, as evaluated by LC–ESI-QTOF-MS. Phenolics from the breeding line 98 exhibited the highest ability in scavenging peroxyl radicals, reducing power as well as in terms of inhibition of pancreatic lipase activity, a key enzyme regulating the absorption of triacylglycerols. In contrast, none of the samples exhibited a significant anti-diabetic potential. Despite their high concentration compared to that of phenolic acids, results of this work do not support a significant antioxidant and pancreatic lipase inhibitory effect of durum wheat flavonoids. Therefore, breeding programs and animal and/or human trials related to the effect of durum wheat flavonoids on oxidative stress and absorption of triacylglycerols are discouraged at this point. Full article
Show Figures

Figure 1

19 pages, 1875 KiB  
Article
Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes
by Sinda Ben Mariem, Jon González-Torralba, Concha Collar, Iker Aranjuelo and Fermín Morales
Plants 2020, 9(12), 1636; https://doi.org/10.3390/plants9121636 - 24 Nov 2020
Cited by 35 | Viewed by 4350
Abstract
The availability and management of N are major determinants of crop productivity, but N excessive use has an associated agro-ecosystems environmental impact. The aim of this work was to investigate the influence of N fertilization on yield and grain quality of 6 durum [...] Read more.
The availability and management of N are major determinants of crop productivity, but N excessive use has an associated agro-ecosystems environmental impact. The aim of this work was to investigate the influence of N fertilization on yield and grain quality of 6 durum wheat genotypes, selected from 20 genotypes as high- and low-yielding genotypes. Two N levels were applied from anthesis to maturity: high (½ Hoagland nutrient solution) and low (modified ½ Hoagland with one-third of N). Together with the agronomic characterization, grain quality analyses were assessed to characterize carbohydrates concentration, mineral composition, glutenin and gliadin concentrations, polyphenol profile, and anti-radical activity. Nitrogen supply improved wheat grain yield with no effect on thousand-grain weight. Grain soluble sugars and gluten fractions were increased, but starch concentration was reduced, under high N. Mineral composition and polyphenol concentrations were also improved by N application. High-yielding genotypes had higher grain carbohydrates concentrations, while higher concentrations in grain minerals, gluten fractions, and polyphenols were recorded in the low-yielding ones. Decreasing the amount of N to one-third ensured a better N use efficiency but reduced durum wheat agronomic and quality traits. Full article
(This article belongs to the Special Issue Cereal Physiology and Breeding)
Show Figures

Figure 1

18 pages, 684 KiB  
Article
Wheat Response to No-Tillage and Nitrogen Fertilization in a Long-Term Faba Bean-Based Rotation
by Salem Alhajj Ali, Luigi Tedone, Leonardo Verdini, Eugenio Cazzato and Giuseppe De Mastro
Agronomy 2019, 9(2), 50; https://doi.org/10.3390/agronomy9020050 - 26 Jan 2019
Cited by 36 | Viewed by 5082
Abstract
A field experiment was conducted in Southern Italy to study the response of durum wheat (Triticum turgidum L. var. durum) grain yield and quality traits to a no-tillage (NT) system and different nitrogen N fertilizer rates (30, 60, and 90 kg [...] Read more.
A field experiment was conducted in Southern Italy to study the response of durum wheat (Triticum turgidum L. var. durum) grain yield and quality traits to a no-tillage (NT) system and different nitrogen N fertilizer rates (30, 60, and 90 kg N ha−1). The NT system was evaluated and compared to conventional (CT) and reduced (RT) tillage within continuous wheat (WW) and faba bean–wheat (FW) crop sequences over 3-years (2010–2012). The results showed a promising grain yield increase (30%) in the last year. The effect of the N rate on protein content was significant, while productive parameters were not significantly influenced due to both weather conditions and the previous crop. Tillage effect was significantly (p ≤ 0.05) positive on grain yield, yield components and quality parameters, especially in NT system, and was more pronounced when accompanied with faba bean in the rotation system. Despite producing a lower grain protein content (13%) compared to other systems, NT produced good semolina quality (with higher hectoliter weight and lower percentage of broken and shriveled grains). This study provides useful information for farmers on how to produce a satisfactory yield and good grain quality with minimum inputs, helping to design sustainable strategies for durum wheat cultivation in the dry regions. Full article
Show Figures

Figure 1

12 pages, 1092 KiB  
Article
Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists
by Juan Palazzini, Pablo Roncallo, Renata Cantoro, María Chiotta, Nadia Yerkovich, Sofía Palacios, Viviana Echenique, Adriana Torres, María Ramirez, Petr Karlovsky and Sofía Chulze
Toxins 2018, 10(2), 88; https://doi.org/10.3390/toxins10020088 - 20 Feb 2018
Cited by 51 | Viewed by 7944
Abstract
Fusarium head blight (FHB) is a devastating disease that causes extensive yield and quality losses to wheat and other small cereal grains worldwide. Species within the Fusarium graminearum complex are the main pathogens associated with the disease, F. graminearum sensu stricto being the [...] Read more.
Fusarium head blight (FHB) is a devastating disease that causes extensive yield and quality losses to wheat and other small cereal grains worldwide. Species within the Fusarium graminearum complex are the main pathogens associated with the disease, F. graminearum sensu stricto being the main pathogen in Argentina. Biocontrol can be used as part of an integrated pest management strategy. Phytohormones play a key role in the plant defense system and their production can be induced by antagonistic microorganisms. The aims of this study were to evaluate the effect of the inoculation of Bacillus velezensis RC 218, F. graminearum and their co-inoculation on the production of salicylic acid (SA) and jasmonic acid (JA) in wheat spikes at different periods of time under greenhouse conditions, and to evaluate the effect of B. velezensis RC 218 and Streptomyces albidoflavus RC 87B on FHB disease incidence, severity and deoxynivalenol accumulation on Triticum turgidum L. var. durum under field conditions. Under greenhouse conditions the production of JA was induced after F. graminearum inoculation at 48 and 72 h, but JA levels were reduced in the co-inoculated treatments. No differences in JA or SA levels were observed between the B. velezensis treatment and the water control. In the spikes inoculated with F. graminearum, SA production was induced early (12 h), as it was shown for initial FHB basal resistance, while JA was induced at a later stage (48 h), revealing different defense strategies at different stages of infection by the hemibiotrophic pathogen F. graminearum. Both B. velezensis RC 218 and S. albidoflavus RC 87B effectively reduced FHB incidence (up to 30%), severity (up to 25%) and deoxynivalenol accumulation (up to 51%) on durum wheat under field conditions. Full article
Show Figures

Graphical abstract

14 pages, 430 KiB  
Article
Variations in Content and Extractability of Durum Wheat (Triticum turgidum L. var durum) Arabinoxylans Associated with Genetic and Environmental Factors
by Roberto Ciccoritti, Giulia Scalfati, Alessandro Cammerata and Daniela Sgrulletta
Int. J. Mol. Sci. 2011, 12(7), 4536-4549; https://doi.org/10.3390/ijms12074536 - 15 Jul 2011
Cited by 33 | Viewed by 9003
Abstract
Arabinoxylans (AX) represent the most abundant components of non-starch polysaccharides in wheat, constituting about 70% of cell wall polysaccharides. An important property of AX is their ability to form highly viscous water solutions; this peculiarity has a significant impact on the technological characteristics [...] Read more.
Arabinoxylans (AX) represent the most abundant components of non-starch polysaccharides in wheat, constituting about 70% of cell wall polysaccharides. An important property of AX is their ability to form highly viscous water solutions; this peculiarity has a significant impact on the technological characteristics of wheat and determines the physiologically positive influence in consumption. Durum wheat (Triticum turgidum L. var durum), the raw material for pasta production, is one of the most important crops in Italy. As part of a large project aimed at improving durum wheat quality, the characterization of the nutritional and technological aspects of whole grains was considered. Particular attention was addressed to identify the best suited genotypes for the production of innovative types of pasta with enhanced functional and organoleptic properties. The objective of the present study was to investigate the genetic variability of AX by examining a group of durum wheat genotypes collected at two localities in Italy for two consecutive years. The environmental influence on AX content and extractability was also evaluated. Variability in the AX fraction contents was observed; the results indicated that AX fractions of durum wheat grain can be affected by the genotype and environment characteristics and the different contribution of genotype and environment to total variation was evidenced. The genotype × environment (G × E) interaction was significant for all examined traits, the variations due to G × E being lower than that of genotype or environment. The data and the statistical analysis allowed identification of the Italian durum wheat varieties that were consistently higher in total arabinoxilans; in addition, principal component analysis biplots illustrated that for arabinoxylan fractions some varieties responded differently in various environment climatic conditions. Full article
(This article belongs to the Special Issue Dietary Fibre: Biochemistry and Nutritional Science)
Show Figures

Back to TopTop