Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Thalassospira sp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2934 KiB  
Article
Assessment of the Microbial Communities in Soil Contaminated with Petroleum Using Next-Generation Sequencing Tools
by Raul García-García, Virgilio Bocanegra-García, Lourdes Vital-López, Jaime García-Mena, Marco Antonio Zamora-Antuñano, María Antonia Cruz-Hernández, Juvenal Rodríguez-Reséndiz and Alberto Mendoza-Herrera
Appl. Sci. 2023, 13(12), 6922; https://doi.org/10.3390/app13126922 - 8 Jun 2023
Cited by 4 | Viewed by 2985
Abstract
Microbial communities are known to play a principal role in petroleum degradation. This study tries to determine the composition of bacteria in selected crude oil-contaminated soil from Tabasco and Tamaulipas states, Mexico. We determined the microbial populations living under these conditions. We evaluated [...] Read more.
Microbial communities are known to play a principal role in petroleum degradation. This study tries to determine the composition of bacteria in selected crude oil-contaminated soil from Tabasco and Tamaulipas states, Mexico. We determined the microbial populations living under these conditions. We evaluated the structure and diversity of bacterial communities in the contaminated soil samples. The most abundant phylum is proteobacteria. Next Generation Sequencing (NGS) analysis of the sampled soils from both states revealed that this phylum has the most relative abundance among the identified bacteria phyla. The heatmap represented the relative percentage of each genus within each sample and clustered the four samples into two groups. Moreover, this allowed us to identify many genera in alkaline soil from Tamaulipas, such as Skermanella sp., Azospirillum sp. and Unclassified species from the Rhodospirillaceae family in higher abundance. Meanwhile, in acidic soil from Tabasco, we identified Thalassospira, Unclassified members of the Sphingomonadaceae family and Unclassified members of the Alphaproteobacteria class with higher abundance. Alpha diversity analysis showed a low diversity (Shannon and Simpson index); Chao observed species in both Regions. These results suggest that the bacteria identified in these genera may possess the ability to degrade petroleum, and further studies in the future should elucidate their role in petroleum degradation. Full article
(This article belongs to the Section Applied Microbiology)
Show Figures

Figure 1

18 pages, 4646 KiB  
Article
Diversity of Mixotrophic Neutrophilic Thiosulfate- and Iron-Oxidizing Bacteria from Deep-Sea Hydrothermal Vents
by Yang He, Xiang Zeng, Fei Xu and Zongze Shao
Microorganisms 2023, 11(1), 100; https://doi.org/10.3390/microorganisms11010100 - 30 Dec 2022
Cited by 9 | Viewed by 4307
Abstract
At deep-sea hydrothermal vents, sulfur oxidation and iron oxidation are of the highest importance to microbial metabolisms, which are thought to contribute mainly in chemolithoautotrophic groups. In this study, 17 mixotrophic neutrophilic thiosulfate- and iron-oxidizing bacteria were isolated from hydrothermal fields on the [...] Read more.
At deep-sea hydrothermal vents, sulfur oxidation and iron oxidation are of the highest importance to microbial metabolisms, which are thought to contribute mainly in chemolithoautotrophic groups. In this study, 17 mixotrophic neutrophilic thiosulfate- and iron-oxidizing bacteria were isolated from hydrothermal fields on the Carlsberg Ridge in the Indian Ocean, nine to the γ-proteobacteria (Halomonas (4), Pseudomonas (2), Marinobacter (2), and Rheinheimera (1)), seven to the α-proteobacteria (Thalassospira, Qipengyuania, Salipiger, Seohaeicola, Martelella, Citromicrobium, and Aurantimonas), and one to the Actinobacteria (Agromyces), as determined by their 16S rRNA and genome sequences. The physiological characterization of these isolates revealed wide versatility in electron donors (Fe(II) and Mn(II), or thiosulfate) and a variety of lifestyles as lithotrophic or heterotrophic, microaerobic, or anaerobic. As a representative strain, Pseudomonas sp. IOP_13 showed its autotrophic gowth from 105 cells/ml to 107 cells/ml;carbon dioxide fixation capacity with the δ13CVPDB in the biomass increased from −27.42‰ to 3460.06‰; the thiosulfate-oxidizing ability with produced SO42− increased from 60 mg/L to 287 mg/L; and the iron-oxidizing ability with Fe(II) decreased from 10 mM to 5.2 mM. In addition, iron-oxide crust formed outside the cells. Gene coding for energy metabolism involved in possible iron, manganese, and sulfur oxidation, and denitrification was identified by their genome analysis. This study sheds light on the function of the mixotrophic microbial community in the iron/manganese/sulfur cycles and the carbon fixation of the hydrothermal fields. Full article
(This article belongs to the Special Issue Diversity of Extremophiles in Hydrothermal Environments)
Show Figures

Figure 1

19 pages, 6480 KiB  
Article
Interaction between Microalgae P. tricornutum and Bacteria Thalassospira sp. for Removal of Bisphenols from Conditioned Media
by David Škufca, Darja Božič, Matej Hočevar, Marko Jeran, Apolonija Bedina Zavec, Matic Kisovec, Marjetka Podobnik, Tadeja Matos, Rok Tomazin, Aleš Iglič, Tjaša Griessler Bulc, Ester Heath and Veronika Kralj-Iglič
Int. J. Mol. Sci. 2022, 23(15), 8447; https://doi.org/10.3390/ijms23158447 - 30 Jul 2022
Cited by 10 | Viewed by 3879
Abstract
We studied the efficiency of three culture series of the microalgae Phaeodactylum tricornutum (P. tricornutum) and bacteria Thalassospira sp. (axenic microalgae, bacterial culture and co-culture of the two) in removing bisphenols (BPs) from their growth medium. Bacteria were identified by 16S [...] Read more.
We studied the efficiency of three culture series of the microalgae Phaeodactylum tricornutum (P. tricornutum) and bacteria Thalassospira sp. (axenic microalgae, bacterial culture and co-culture of the two) in removing bisphenols (BPs) from their growth medium. Bacteria were identified by 16S ribosomal RNA polymerase chain reaction (16S rRNA PCR). The microorganism growth rate was determined by flow cytometry. Cultures and isolates of their small cellular particles (SCPs) were imaged by scanning electron microscopy (SEM) and cryogenic transmission electron microscopy (Cryo-TEM). BPs were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). Our results indicate that some organisms may have the ability to remove a specific pollutant with high efficiency. P. tricornutum in axenic culture and in mixed culture removed almost all (more than 99%) of BPC2. Notable differences in the removal of 8 out of 18 BPs between the axenic, mixed and bacterial cultures were found. The overall removals of BPs in axenic P. tricornutum, mixed and bacterial cultures were 11%, 18% and 10%, respectively. Finding the respective organisms and creating microbe societies seems to be key for the improvement of wastewater treatment. As a possible mediating factor, numerous small cellular particles from all three cultures were detected by electron microscopy. Further research on the mechanisms of interspecies communication is needed to advance the understanding of microbial communities at the nano-level. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

17 pages, 8440 KiB  
Article
Medium Optimization and Fermentation Kinetics for κ-Carrageenase Production by Thalassospira sp. Fjfst-332
by Juanjuan Guo, Longtao Zhang, Xu Lu, Shaoxiao Zeng, Yi Zhang, Hui Xu and Baodong Zheng
Molecules 2016, 21(11), 1479; https://doi.org/10.3390/molecules21111479 - 5 Nov 2016
Cited by 18 | Viewed by 6596
Abstract
Effective degradation of κ-carrageenan by isolated Thalassospira sp. fjfst-332 is reported for the first time in this paper. It was identified by 16S rDNA sequencing and morphological observation using Transmission Electron Microscopy (TEM). Based on a Plackett–Burman design for significant variables, Box–Behnken experimental [...] Read more.
Effective degradation of κ-carrageenan by isolated Thalassospira sp. fjfst-332 is reported for the first time in this paper. It was identified by 16S rDNA sequencing and morphological observation using Transmission Electron Microscopy (TEM). Based on a Plackett–Burman design for significant variables, Box–Behnken experimental design and response surface methodology were used to optimize the culture conditions. Through statistical optimization, the optimum medium components were determined as follows: 2.0 g/L κ-carrageenan, 1.0 g/L yeast extract, 1.0 g/L FOS, 20.0 g/L NaCl, 2.0 g/L NaNO3, 0.5 g/L MgSO4·7H2O, 0.1 g/L K2HPO4, and 0.1 g/L CaCl2. The highest activity exhibited by Thalassospira sp. fjfst-332 was 267 U/mL, which makes it the most vigorous wild bacterium for κ-carrageenan production. In order to guide scaled-up production, two empirical models—the logistic equation and Luedeking–Piretequation—were proposed to predict the strain growth and enzyme production, respectively. Furthermore, we report the fermentation kinetics and every empirical equation of the coefficients (α, β, X0, Xm and μm) for the two models, which could be used to design and optimize industrial processes. Full article
Show Figures

Figure 1

12 pages, 627 KiB  
Article
Thalassospiramide G, a New γ-Amino-Acid-Bearing Peptide from the Marine Bacterium Thalassospira sp.
by Soohyun Um, Yuna Pyee, Eun-Hee Kim, Sang Kook Lee, Jongheon Shin and Dong-Chan Oh
Mar. Drugs 2013, 11(3), 611-622; https://doi.org/10.3390/md11030611 - 26 Feb 2013
Cited by 28 | Viewed by 8715
Abstract
In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1), along with thalassospiramides A and D (23), was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino [...] Read more.
In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1), along with thalassospiramides A and D (23), was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino acids, such as 4-amino-5-hydroxy-penta-2-enoic acid (AHPEA), 4-amino-3,5-dihydroxy-pentanoic acid (ADPA), and unique 2-amino-1-(1H-indol-3-yl) ethanone (AIEN), was determined via extensive spectroscopic analysis. The absolute configuration of thalassospiramide D (3), including 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA), was rigorously determined by 1H–1H coupling constant analysis and chemical derivatization. Thalassospiramides A and D (23) inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells, with IC50 values of 16.4 and 4.8 μM, respectively. Full article
(This article belongs to the Special Issue Marine Secondary Metabolites)
Show Figures

Graphical abstract

Back to TopTop