Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Tetragonia tetragonoides (Pall.) Kuntze

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9066 KiB  
Article
Genome-Wide Identification and Expression Analyses of the Thaumatin-Like Protein Gene Family in Tetragonia tetragonoides (Pall.) Kuntze Reveal Their Functions in Abiotic Stress Responses
by Zengwang Huang, Qianqian Ding, Zhengfeng Wang, Shuguang Jian and Mei Zhang
Plants 2024, 13(17), 2355; https://doi.org/10.3390/plants13172355 - 23 Aug 2024
Cited by 2 | Viewed by 1460
Abstract
Thaumatin-like proteins (TLPs), including osmotins, are multifunctional proteins related to plant biotic and abiotic stress responses. TLPs are often present as large multigene families. Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used in both food and [...] Read more.
Thaumatin-like proteins (TLPs), including osmotins, are multifunctional proteins related to plant biotic and abiotic stress responses. TLPs are often present as large multigene families. Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used in both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline–alkaline soils and drought are two major abiotic stress factors significantly affecting the distribution of tropical coastal plants. The expression of stress resistance genes would help to alleviate the cellular damage caused by abiotic stress factors such as high temperature, salinity–alkalinity, and drought. This study aimed to better understand the functions of TLPs in the natural ecological adaptability of T. tetragonoides to harsh habitats. In the present study, we used bioinformatics approaches to identify 37 TtTLP genes as gene family members in the T. tetragonoides genome, with the purpose of understanding their roles in different developmental processes and the adaptation to harsh growth conditions in tropical coral regions. All of the TtTLPs were irregularly distributed across 32 chromosomes, and these gene family members were examined for conserved motifs of their coding proteins and gene structure. Expression analysis based on RNA sequencing and subsequent qRT-PCR showed that the transcripts of some TtTLPs were decreased or accumulated with tissue specificity, and under environmental stress challenges, multiple TtTLPs exhibited changeable expression patterns at short (2 h), long (48 h), or both stages. The expression pattern changes in TtTLPs provided a more comprehensive overview of this gene family being involved in multiple abiotic stress responses. Furthermore, several TtTLP genes were cloned and functionally identified using the yeast expression system. These findings not only increase our understanding of the role that TLPs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant TLP evolution. This study also provides a basis and reference for future research on the roles of plant TLPs in stress tolerance and ecological environment suitability. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

19 pages, 3664 KiB  
Article
Identification of the Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Family Involved in the Adaptation of Tetragonia tetragonoides (Pall.) Kuntze to Saline–Alkaline and Drought Habitats
by Hao Liu, Qianqian Ding, Lisha Cao, Zengwang Huang, Zhengfeng Wang, Mei Zhang and Shuguang Jian
Int. J. Mol. Sci. 2023, 24(21), 15815; https://doi.org/10.3390/ijms242115815 - 31 Oct 2023
Cited by 4 | Viewed by 1777
Abstract
Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline–alkaline soils and drought stress are two major abiotic [...] Read more.
Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline–alkaline soils and drought stress are two major abiotic stressors that significantly affect the distribution of tropical coastal plants. Abscisic acid-, stress-, and ripening-induced (ASR) proteins belong to a family of plant-specific, small, and hydrophilic proteins with important roles in plant development, growth, and abiotic stress responses. Here, we characterized the ASR gene family from T. tetragonoides, which contained 13 paralogous genes, and divided TtASRs into two subfamilies based on the phylogenetic tree. The TtASR genes were located on two chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the expression levels of TtASRs were induced by multiple abiotic stressors, indicating that this gene family could participate widely in the response to stress. Furthermore, several TtASR genes were cloned and functionally identified using a yeast expression system. Our results indicate that TtASRs play important roles in T. tetragonoides’ responses to saline–alkaline soils and drought stress. These findings not only increase our understanding of the role ASRs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant ASR protein evolution. Full article
Show Figures

Figure 1

12 pages, 3204 KiB  
Article
Effect of Tetragonia tetragonoides (Pall.) Kuntze Extract on Andropause Symptoms
by Ka Youn Lee, Seung-Hyung Kim, Won-Kyung Yang and Geung-Joo Lee
Nutrients 2022, 14(21), 4572; https://doi.org/10.3390/nu14214572 - 31 Oct 2022
Cited by 9 | Viewed by 2704
Abstract
Testosterone and free testosterone levels decrease in men as they age, consequently inducing andropause symptoms, such as weight gain, fatigue, and depression. Therefore, this study aimed to evaluate the reducing effect of New Zealand spinach (NZS) on these androgenic symptoms by orally administering [...] Read more.
Testosterone and free testosterone levels decrease in men as they age, consequently inducing andropause symptoms, such as weight gain, fatigue, and depression. Therefore, this study aimed to evaluate the reducing effect of New Zealand spinach (NZS) on these androgenic symptoms by orally administering its extract to 26-week-old rats for four weeks. Biochemical blood testing was conducted, and the andropause symptoms-related indicators and muscular endurance levels were examined. In the NZS extract-treated rats, the decrease in muscle mass was suppressed, and immobility time was reduced in the forced swim test. In addition, the grip force and muscular endurance of the forelimbs were significantly increased compared to the control group; therefore, NZS extract exhibits a positive effect on the maintenance of muscle mass and improves muscular endurance. The representative male hormones, testosterone and progesterone, in the NZS extract-treated group were 1.84 times and 2.48 times higher than those in the control groups, respectively. Moreover, cholesterol and low-density lipoprotein, which affect lipid metabolism, were significantly reduced in the NZS extract-treated group. Overall, NZS extract shows potential for further development as a functional food material for improving muscle strength and relieving andropause symptoms. Full article
(This article belongs to the Special Issue Nutrition, Metabolites, and Human Health)
Show Figures

Graphical abstract

15 pages, 2746 KiB  
Article
Tetragonia tetragonoides (Pall.) Kuntze Restores Blood Perfusion from Hind-Limb Ischemic Mice
by Hyun Yang, Dong Ho Jung, Hye Won Lee, Dongoh Lee and Byoung Seob Ko
Appl. Sci. 2020, 10(23), 8562; https://doi.org/10.3390/app10238562 - 30 Nov 2020
Viewed by 2643
Abstract
Tetragonia tetragonoides (Pall.) Kuntze (TTK) is grown for the edible leaves, and can be used as food. And which commonly called Beonhaengcho in Republic of Korea. TTK is found along the seaside of the Jeju-Island and it has long been consumed [...] Read more.
Tetragonia tetragonoides (Pall.) Kuntze (TTK) is grown for the edible leaves, and can be used as food. And which commonly called Beonhaengcho in Republic of Korea. TTK is found along the seaside of the Jeju-Island and it has long been consumed as a food for women’s health. We investigated the effects of TTK on peripheral circulation disorder during menopausal transition and/or menopause in a hind-limb ischemic (HLI) mouse model. Chemotactic motility and tube formation of vascular epithelial cells were evaluated in human umbilical vein endothelial cells (HUVECs). Female C57BL/6 mice were fed a TTK (150 or 450 mg/kg/day) for four weeks and the rate of blood flow was assessed using a laser Doppler after HLI. TTK treatment significantly increased cell migration and the branch interval value of tubular structure in a dose-dependently. In the TTK treatment group, blood flow rate was significant induced at 7, 14, and 28 days after HLI, compared with the vehicle. TTK treatment also an increase in capillary density, and the highest levels of pERK(1/2), pAkt, pPLCγ1 and pFAK proteins compared to the vehicle control. These results suggest that extract of TTK may ameliorate the blood flow via improvement of peripheral angiogenesis under hind-limb ischemic stress in a menopausal mouse model. Full article
(This article belongs to the Special Issue Functional Food and Chronic Disease)
Show Figures

Figure 1

16 pages, 4385 KiB  
Article
Tetragonia tetragonoides (Pall.) Kuntze (New Zealand Spinach) Prevents Obesity and Hyperuricemia in High-Fat Diet-Induced Obese Mice
by Young-Sil Lee, Seung-Hyung Kim, Heung Joo Yuk, Geung-Joo Lee and Dong-Seon Kim
Nutrients 2018, 10(8), 1087; https://doi.org/10.3390/nu10081087 - 14 Aug 2018
Cited by 27 | Viewed by 6665
Abstract
Tetragonia tetragonoides (Pall.) Kuntze, called New Zealand spinach (NZS), is an edible plant used in salad in Western countries and has been used to treat gastrointestinal diseases in traditional medicine. We examined the anti-obesity and anti-hyperuricemic effects of NZS and the underlying mechanisms [...] Read more.
Tetragonia tetragonoides (Pall.) Kuntze, called New Zealand spinach (NZS), is an edible plant used in salad in Western countries and has been used to treat gastrointestinal diseases in traditional medicine. We examined the anti-obesity and anti-hyperuricemic effects of NZS and the underlying mechanisms in high-fat diet (HFD)-induced obese mice. Mice were fed a normal-fat diet (NFD); high-fat diet (HFD); HFD with 75, 150, or 300 mg/kg NZS extract; or 245 mg/kg Garcinia cambogia (GC) extract. NZS decreased body weight gain, total white adipose tissue (WAT), liver weight, and size of adipocytes and improved hepatic and plasma lipid profiles. With NZS, the plasma levels of the leptin and uric acid were significantly decreased while the levels of the adiponectin were increased. Furthermore, NZS decreased the expression levels of adipogenesis-related genes and xanthine oxidoreductase (XOR), which is involved in uric acid production, while increasing that of proteins associated with fatty acid oxidation. UPLC analysis revealed that NZS contained 6-methoxykaempferol-3-O-β-d-glucosyl(1′′′→2′′)-β-d-glucopyranoside, 6-methoxykaempferol-3-O-β-d-glucosyl(1′′′→2′′)-β-d-glucopyranosyl-(6′′′′-caffeoyl)-7-O-β-d-glucopyranoside, and 6,4′-dimethoxykaempferol-3-O-β-d-glucosyl(1′′′→2′′)-β-d-glucopyranosyl-(6′′′′-caffeoyl)-7-O-β-d-glucopyranoside. These results suggest that NZS exerts anti-obesity, anti-hyperlipidemia, and anti-hyperuricemic effects in HFD-induced obese mice, which are partly explained by regulation of lipid-metabolism-related genes and proteins and decreased expression of XOR. Full article
Show Figures

Figure 1

Back to TopTop