Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Taylor–Couette–Poiseuille flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7273 KiB  
Article
Comparative Study on Flux Solution Methods of Discrete Unified Gas Kinetic Scheme
by Wenqiang Guo
Entropy 2025, 27(5), 528; https://doi.org/10.3390/e27050528 - 15 May 2025
Viewed by 338
Abstract
In this work, the Simpson method is proposed to calculate the interface flux of a discrete unified gas kinetic scheme (DUGKS) according to the distribution function at the node and the midpoint of the interface, which is noted by Simpson–DUGKS. Moreover, the optimized [...] Read more.
In this work, the Simpson method is proposed to calculate the interface flux of a discrete unified gas kinetic scheme (DUGKS) according to the distribution function at the node and the midpoint of the interface, which is noted by Simpson–DUGKS. Moreover, the optimized DUGKS and Simpson–DUGKS considering the force term are derived. Then, the original DUGKS, optimized DUGKS, and Simpson–DUGKS are compared and analyzed in theory. Finally, the numerical tests are performed under different grid numbers (N). In the steady unidirectional flow (Couette flow and Poiseuille flow), the three methods are stable under different Courant–Friedrichs–Lewy (CFL) numbers, and the calculated L2 errors are the same. In the Taylor–Green vortex flow, the L2 error of the optimized DUGKS is the smallest with respect to the analytical solution of velocity, but the L2 error of the optimized DUGKS is the largest with respect to the analytical solution of density. In the lid-driven cavity flow, the results of the optimized DUGKS deviate more from the reference results in terms of accuracy, especially in the case of a small grid number. In terms of computational efficiency, it should be noted that the computational time of optimized DUGKS increases by about 40% compared with the original DUGKS when CFL = 0.1 and N = 16, and the calculation time of Simpson–DUGKS is reduced by about 59% compared with the original DUGKS when CFL = 0.95 and N = 16. Full article
(This article belongs to the Special Issue Mesoscopic Fluid Mechanics)
Show Figures

Figure 1

17 pages, 5299 KiB  
Article
Numerical Simulation of Taylor—Couette—Poiseuille Flow at Re = 10,000
by Andrey Gavrilov and Yaroslav Ignatenko
Fluids 2023, 8(10), 280; https://doi.org/10.3390/fluids8100280 - 19 Oct 2023
Cited by 4 | Viewed by 2505
Abstract
A fully developed turbulent flow in a concentric annulus, Re =10,000, ri/ro=0.5, with an inner rotating cylinder in the velocity range N=Uω/Ub=0÷4, is [...] Read more.
A fully developed turbulent flow in a concentric annulus, Re =10,000, ri/ro=0.5, with an inner rotating cylinder in the velocity range N=Uω/Ub=0÷4, is studied via a large-eddy simulation. Also, for comparison, simulations by steady-state, unstatiounary RANS k-ω SST (URANS), and Elliptic Blending Model (EBM) were made. The main focus of this study is on the effect of high rotation on the mean flow, turbulence statistics, and vortex structure. Distribution of the tangential velocity and the Reynolds stress tensor change their behaviour at N>0.51. With rotation increases, the production of tangential fluctuation becomes dominant over axial ones and the position of turbulent kinetic energy maximum shifts towards the wall into the buffer zone. URANS and EBM approaches show good agreement with LES in mean flow, turbulent statistics, and integral parameters. The difference in pressure loss prediction between LES and URANS does not exceed 20%, but the average difference is about 11%. The EBM approach underestimates pressure losses up to 9% and on average not more than 5%. Vortex structures are described well by URANS. Full article
(This article belongs to the Collection Advances in Turbulence)
Show Figures

Figure 1

43 pages, 6932 KiB  
Article
Novel Schemes of No-Slip Boundary Conditions for the Discrete Unified Gas Kinetic Scheme Based on the Moment Constraints
by Wenqiang Guo and Guoxiang Hou
Entropy 2023, 25(5), 780; https://doi.org/10.3390/e25050780 - 10 May 2023
Cited by 2 | Viewed by 2445
Abstract
The boundary conditions are crucial for numerical methods. This study aims to contribute to this growing area of research by exploring boundary conditions for the discrete unified gas kinetic scheme (DUGKS). The importance and originality of this study are that it assesses and [...] Read more.
The boundary conditions are crucial for numerical methods. This study aims to contribute to this growing area of research by exploring boundary conditions for the discrete unified gas kinetic scheme (DUGKS). The importance and originality of this study are that it assesses and validates the novel schemes of the bounce back (BB), non-equilibrium bounce back (NEBB), and Moment-based boundary conditions for the DUGKS, which translate boundary conditions into constraints on the transformed distribution functions at a half time step based on the moment constraints. A theoretical assessment shows that both present NEBB and Moment-based schemes for the DUGKS can implement a no-slip condition at the wall boundary without slip error. The present schemes are validated by numerical simulations of Couette flow, Poiseuille flow, Lid-driven cavity flow, dipole–wall collision, and Rayleigh–Taylor instability. The present schemes of second-order accuracy are more accurate than the original schemes. Both present NEBB and Moment-based schemes are more accurate than the present BB scheme in most cases and have higher computational efficiency than the present BB scheme in the simulation of Couette flow at high Re. The present Moment-based scheme is more accurate than the present BB, NEBB schemes, and reference schemes in the simulation of Poiseuille flow and dipole–wall collision, compared to the analytical solution and reference data. Good agreement with reference data in the numerical simulation of Rayleigh–Taylor instability shows that they are also of use to the multiphase flow. The present Moment-based scheme is more competitive in boundary conditions for the DUGKS. Full article
(This article belongs to the Special Issue Kinetic Theory-Based Methods in Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

15 pages, 3651 KiB  
Article
Upregulation of DJ-1 in Dopaminergic Neurons by a Physically-Modified Saline: Implications for Parkinson’s Disease
by Malabendu Jana, Sridevi Dasarathy, Supurna Ghosh and Kalipada Pahan
Int. J. Mol. Sci. 2023, 24(5), 4652; https://doi.org/10.3390/ijms24054652 - 28 Feb 2023
Cited by 3 | Viewed by 2395
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in human and loss-of-functions DJ-1 mutations are associated with a familial form of early onset PD. Functionally, DJ-1 (PARK7), a neuroprotective protein, is known to support mitochondria and protect cells from oxidative stress. [...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in human and loss-of-functions DJ-1 mutations are associated with a familial form of early onset PD. Functionally, DJ-1 (PARK7), a neuroprotective protein, is known to support mitochondria and protect cells from oxidative stress. Mechanisms and agents by which the level of DJ-1 could be increased in the CNS are poorly described. RNS60 is a bioactive aqueous solution created by exposing normal saline to Taylor-Couette-Poiseuille flow under high oxygen pressure. Recently we have described neuroprotective, immunomodulatory and promyelinogenic properties of RNS60. Here we delineate that RNS60 is also capable of increasing the level of DJ-1 in mouse MN9D neuronal cells and primary dopaminergic neurons, highlighting another new neuroprotective effect of RNS60. While investigating the mechanism we found the presence of cAMP response element (CRE) in DJ-1 gene promoter and stimulation of CREB activation in neuronal cells by RNS60. Accordingly, RNS60 treatment increased the recruitment of CREB to the DJ-1 gene promoter in neuronal cells. Interestingly, RNS60 treatment also induced the enrollment of CREB-binding protein (CBP), but not the other histone acetyl transferase p300, to the promoter of DJ-1 gene. Moreover, knockdown of CREB by siRNA led to the inhibition of RNS60-mediated DJ-1 upregulation, indicating an important role of CREB in DJ-1 upregulation by RNS60. Together, these results indicate that RNS60 upregulates DJ-1 in neuronal cells via CREB–CBP pathway. It may be of benefit for PD and other neurodegenerative disorders. Full article
(This article belongs to the Special Issue Development of Dopaminergic Neurons 2.0)
Show Figures

Figure 1

16 pages, 4738 KiB  
Review
Heat Transport in Rotating Annular Duct: A Short Review
by Maxime Piton, Florian Huchet, Bogdan Cazacliu and Olivier Le Corre
Energies 2022, 15(22), 8633; https://doi.org/10.3390/en15228633 - 17 Nov 2022
Cited by 7 | Viewed by 2801
Abstract
Heat transport in rotating processes finds a wide range of application in which academic issues in the fluid mechanics and heat transfer areas are here reported. This paper discusses successive works from the seminal paper of Taylor (1923) to recent numerical results established [...] Read more.
Heat transport in rotating processes finds a wide range of application in which academic issues in the fluid mechanics and heat transfer areas are here reported. This paper discusses successive works from the seminal paper of Taylor (1923) to recent numerical results established from a broad range of methods such as DNS, LES, RANS or LB methods. The flow regimes identification is thus reported in Taylor–Couette geometry. The role of the axial flow rates in the apparition, stabilization and destruction of the large-scale of the turbulent structures is depicted in the case of Taylor–Couette–Poiseuille geometry. In a non-isothermal condition, a discussion is held on the various exponent values found in the scaling relationships relying on the Nusselt number as a function of the Rayleigh or Reynolds numbers according to the regimes of thermal convection. Full article
Show Figures

Figure 1

18 pages, 10298 KiB  
Article
Numerical Turbulent Flow Analysis through a Rotational Heat Recovery System
by Maxime Piton, Florian Huchet, Bogdan Cazacliu and Olivier Le Corre
Energies 2022, 15(18), 6792; https://doi.org/10.3390/en15186792 - 16 Sep 2022
Cited by 2 | Viewed by 1858
Abstract
Herein, hydrodynamic analysis from a large-eddy simulation in Couette–Taylor–Poiseuille (CTP) geometry is numerically investigated. The present geometry is inspired by a previous experimental work in which heat transport phenomena were investigated in a heat recovery system devoted to a rotary kiln facility. The [...] Read more.
Herein, hydrodynamic analysis from a large-eddy simulation in Couette–Taylor–Poiseuille (CTP) geometry is numerically investigated. The present geometry is inspired by a previous experimental work in which heat transport phenomena were investigated in a heat recovery system devoted to a rotary kiln facility. The streamwise and spanwise components of the velocity and the Reynolds stress tensor are firstly validated using an experimental benchmark. The effect of the axial flow rates is studied at a fixed rotational velocity. It is shown that the streamwise velocity component damps the vortex flow organization known in Couette–Taylor (CT) flow. The bulk region and its wall footprint are therefore characterized by various methods (spectral and statistical analysis, Q-criterion). It is shown that the turbulent kinetic energy of the streamwise component in the near-wall region is augmented leading to a multi-scale nature of turbulence. Full article
Show Figures

Figure 1

28 pages, 7612 KiB  
Article
A 3D CFD-Based Workflow for Analyses of a Wide Range of Flow and Heat Transfer Conditions in Air Gaps of Electric Machines
by Anton Žnidarčič and Tomaž Katrašnik
Fluids 2022, 7(8), 273; https://doi.org/10.3390/fluids7080273 - 10 Aug 2022
Cited by 1 | Viewed by 2356
Abstract
Increasing power densities of electric machines in e-vehicles in addition to the resulting quest for enhanced cooling concepts are bringing forward the importance of defining adequate heat transfer correlations in air gaps. This is a highly challenging topic, as there exist no generally [...] Read more.
Increasing power densities of electric machines in e-vehicles in addition to the resulting quest for enhanced cooling concepts are bringing forward the importance of defining adequate heat transfer correlations in air gaps. This is a highly challenging topic, as there exist no generally applicable flow and heat transfer phenomena descriptions for air gaps due to their highly variable geometrical properties and operating conditions. As an answer to this challenge, this paper presents a workflow that defines an adequate 3D CFD model for an arbitrary air-gap design that includes its system-dependent boundary conditions. The workflow is built on the recognition of underlying air-gap flow phenomena, which are used to steer the subsequent design of the 3D CFD model in a systematic step-by-step manner. Consequently, the complexity of the 3D CFD model gradually increases to the point where it provides an adequate flow and heat transfer description. Validation of the workflow is presented for a wide range of air-gap designs and flow conditions. It is demonstrated that the 3D CFD models obtained with the workflow match the experimentally obtained data from various flow cases that have been documented in the literature. Considerable optimization of computational costs, offering potentially an order-of-magnitude reduction in computational time, is achieved as a result of computational domain span optimization and transient simulations being applied only when required. The validation confirms that this workflow facilitates construction of valid 3D CFD models without the prior knowledge of flow and heat transfer phenomena in a specific air gap. This workflow thus provides a reliable and computationally efficient tool for valorization of convective heat transfer, and opens up prospects for time- and cost-efficient optimizations of electric machines’ cooling system designs. Full article
Show Figures

Figure 1

23 pages, 13792 KiB  
Article
SPH-ALE Scheme for Weakly Compressible Viscous Flow with a Posteriori Stabilization
by Antonio Eirís, Luis Ramírez, Javier Fernández-Fidalgo, Iván Couceiro and Xesús Nogueira
Water 2021, 13(3), 245; https://doi.org/10.3390/w13030245 - 20 Jan 2021
Cited by 7 | Viewed by 3749
Abstract
A highly accurate SPH method with a new stabilization paradigm has been introduced by the authors in a recent paper aimed to solve Euler equations for ideal gases. We present here the extension of the method to viscous incompressible flow. Incompressibility is tackled [...] Read more.
A highly accurate SPH method with a new stabilization paradigm has been introduced by the authors in a recent paper aimed to solve Euler equations for ideal gases. We present here the extension of the method to viscous incompressible flow. Incompressibility is tackled assuming a weakly compressible approach. The method adopts the SPH-ALE framework and improves accuracy by taking high-order variable reconstruction of the Riemann states at the midpoints between interacting particles. The moving least squares technique is used to estimate the derivatives required for the Taylor approximations for convective fluxes, and also provides the derivatives needed to discretize the viscous flux terms. Stability is preserved by implementing the a posteriori Multi-dimensional Optimal Order Detection (MOOD) method procedure thus avoiding the utilization of any slope/flux limiter or artificial viscosity. The capabilities of the method are illustrated by solving one- and two-dimensional Riemann problems and benchmark cases. The proposed methodology shows improvements in accuracy in the Riemann problems and does not require any parameter calibration. In addition, the method is extended to the solution of viscous flow and results are validated with the analytical Taylor–Green, Couette and Poiseuille flows, and lid-driven cavity test cases. Full article
(This article belongs to the Special Issue Computational Fluid Mechanics and Hydraulics)
Show Figures

Figure 1

Back to TopTop