Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = TREM-1 signal pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1110 KiB  
Article
The Effect of Ursodeoxycholic Acid (UDCA) on Serum Expression of miR-34a and miR-506 in Patients with Chronic Cholestatic Liver Diseases
by Eliza Cielica, Alicja Łaba, Piotr Milkiewicz, Beata Kruk, Agnieszka Kempinska-Podhorodecka, Patrycja Kłos, Pedro M. Rodrigues, Beatriz Val, Maria J. Perugorria, Jesus M. Banales and Malgorzata Milkiewicz
Cells 2025, 14(15), 1137; https://doi.org/10.3390/cells14151137 - 23 Jul 2025
Viewed by 504
Abstract
Ursodeoxycholic acid (UDCA) is widely used to treat cholestatic liver diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), yet its molecular mechanisms remain unclear. This study investigated the impact of long-term UDCA therapy on circulating levels of the microRNAs [...] Read more.
Ursodeoxycholic acid (UDCA) is widely used to treat cholestatic liver diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), yet its molecular mechanisms remain unclear. This study investigated the impact of long-term UDCA therapy on circulating levels of the microRNAs miR-34a and miR-506, which are implicated in PBC pathogenesis, and explored associated changes in inflammatory markers and signaling pathways. Serum samples from patients with PBC and PSC were collected before and after UDCA treatment and analyzed for miRNA expression as well as levels of TREM-2 and sCD163. In vitro studies using human cholangiocytes and lipopolysaccharide (LPS) stimulation assessed changes in the expression of miR-34a, TREM-2, and ADAM17. The results showed that the baseline levels of miR-34a and miR-506 were significantly elevated in PBC patients compared to controls and were significantly reduced after UDCA therapy in PBC but not in PSC. UDCA also decreased serum levels of TREM-2 and sCD163. In vitro, it suppressed the LPS-induced expression of miR-34a and ADAM17 while enhancing TREM-2 expression. Single-cell RNA sequencing of liver tissue and immunofluorescence staining confirmed TREM-2 expression in cholangiocytes. These findings suggest that UDCA modulates key inflammatory pathways and miRNAs in PBC, providing mechanistic insights into its therapeutic effect Full article
Show Figures

Figure 1

18 pages, 5892 KiB  
Article
CXCL12 Drives Reversible Fibroimmune Remodeling in Androgenetic Alopecia Revealed by Single-Cell RNA Sequencing
by Seungchan An, Mei Zheng, In Guk Park, Leegu Song, Jino Kim, Minsoo Noh and Jong-Hyuk Sung
Int. J. Mol. Sci. 2025, 26(14), 6568; https://doi.org/10.3390/ijms26146568 - 8 Jul 2025
Viewed by 819
Abstract
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) [...] Read more.
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) have been suggested as androgen-responsive stromal cells and a potential source of CXCL12, a chemokine implicated in fibroimmune pathology, but their precise role in AGA has not been fully established. In this study, we performed single-cell transcriptomic profiling of a testosterone-induced mouse model of AGA, with or without treatment of CXCL12-neutralizing antibody, to elucidate the pathological role of CXCL12 in mediating stromal-immune interactions. Our analysis suggested that DFs are the primary androgen-responsive population driving CXCL12 expression. Autocrine CXCL12-ACKR3 signaling in DFs activated TGF-β pathways and promoted fibrotic extracellular matrix deposition. In parallel, paracrine CXCL12-CXCR4 signaling reprogrammed Sox2+Twist1+ dermal papilla cells (DPCs) and promoted the accumulation of pro-fibrotic Trem2+ macrophages, contributing to impaired hair follicle regeneration. Notably, CXCL12 blockade attenuated these stromal and immune alterations, restored the regenerative capacity of DPCs, reduced pro-fibrotic macrophage infiltration, and promoted hair regrowth. Together, these findings identify CXCL12 as a central mediator of androgen-induced fibroimmune remodeling and highlight its potential as a therapeutic target in AGA. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

25 pages, 6990 KiB  
Article
Study on the Pharmacological Efficacy and Mechanism of Dual-Target Liposome Complex AD808 Against Alzheimer’s Disease
by Chang Liu, Xiaoqing Wang, Wei Xu, Songli Yu, Yueru Zhang, Qiming Xu and Xiangshi Tan
Pharmaceuticals 2025, 18(7), 977; https://doi.org/10.3390/ph18070977 - 29 Jun 2025
Viewed by 638
Abstract
Background/Objectives: To study the efficacy and pharmacological mechanism of the dual-target liposome complex AD808 in the treatment of Alzheimer’s disease. Methods: Using APP/PS1 mouse models, the therapeutic efficacy and pharmacological mechanism of AD808 on Alzheimer’s disease were studied through water maze [...] Read more.
Background/Objectives: To study the efficacy and pharmacological mechanism of the dual-target liposome complex AD808 in the treatment of Alzheimer’s disease. Methods: Using APP/PS1 mouse models, the therapeutic efficacy and pharmacological mechanism of AD808 on Alzheimer’s disease were studied through water maze tests, brain tissue staining, immunofluorescence, and ELISA for inflammatory and neurotrophic factors. Results: AD808 exhibited significant pharmacodynamic effects in improving behavioral and cognitive abilities (70% reduction in escape latency) and repairing damaged nerve cells (90% reduction in Aβ plaque) in Alzheimer’s disease mice. The efficacy of the liposome complex AD808 was significantly better than that of ST707 or gh625-Zn7MT3 alone. AD808 significantly reduced brain inflammation (57.3% and 61.5% reductions in TNF-α and IL-1β, respectively) in AD (Alzheimer’s disease) mouse models and promoted the upregulation of neurotrophic factors and nerve growth factors (142.8% increase in BDNF, 275.9% in GDNF, and 111.3% in NGF-1) in brain homogenates. By activating the PI3K/AKT signaling pathway in brain microglia, AD808 upregulated TREM2 protein expression and removed Aβ amyloid plaques in the brain. Additionally, it promoted the transition of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, regulated the M1/M2 balance, released anti-inflammatory and neurotrophic factors, reduced chronic inflammation, and enhanced neurological repair. Based on these results, the potential pharmacological mechanism of AD808 against Alzheimer’s disease was proposed. Conclusions: As a dual-target liposome complex, AD808 has shown promising therapeutic potential in the treatment of Alzheimer’s disease, providing a new strategy for innovative drug development. Full article
(This article belongs to the Special Issue Pharmacotherapy for Alzheimer’s Disease)
Show Figures

Figure 1

30 pages, 1333 KiB  
Review
The APOE–Microglia Axis in Alzheimer’s Disease: Functional Divergence and Therapeutic Perspectives—A Narrative Review
by Aiwei Liu, Tingxu Wang, Liu Yang and Yu Zhou
Brain Sci. 2025, 15(7), 675; https://doi.org/10.3390/brainsci15070675 - 23 Jun 2025
Cited by 1 | Viewed by 1602
Abstract
Apolipoprotein E (APOE) alleles play distinct roles in the pathogenesis of Alzheimer’s disease (AD), with APOEε4 being the strongest genetic risk factor for late-onset AD, while APOEε2 appears protective. Despite extensive research, the precise mechanisms by which APOE alleles contribute to [...] Read more.
Apolipoprotein E (APOE) alleles play distinct roles in the pathogenesis of Alzheimer’s disease (AD), with APOEε4 being the strongest genetic risk factor for late-onset AD, while APOEε2 appears protective. Despite extensive research, the precise mechanisms by which APOE alleles contribute to AD pathology remain incompletely understood. Recent advances in multi-omics technologies and single-cell analyses have revealed that APOE alleles shape microglial phenotypes, thereby affecting amyloid clearance, inflammatory responses, tau pathology, and lipid metabolism. In this review, we provide a detailed overview of how APOE alleles differentially regulate microglial activation, inflammatory signaling, phagocytic activity, and lipid metabolism in the context of AD, with a particular focus on the APOEε4-mediated disruption of microglial homeostasis via pathways such as TREM2 signaling, NF-κB/NLRP3 activation, ACSL1 upregulation, and HIF-1α induction. These insights not only advance our understanding of APOE allele-specific contributions to AD pathology, but also highlight novel therapeutic strategies targeting the APOE–microglia axis. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

17 pages, 788 KiB  
Review
Amyloid β-Induced Inflammarafts in Alzheimer’s Disease
by Shihui Ding, Soo-Ho Choi and Yury I. Miller
Int. J. Mol. Sci. 2025, 26(10), 4592; https://doi.org/10.3390/ijms26104592 - 10 May 2025
Cited by 2 | Viewed by 1083
Abstract
The formation of amyloid beta (Aβ) plaques is a central process in the development of Alzheimer’s disease (AD). Although its causative role or the effectiveness of therapeutic targeting is still debated, the key involvement of Aβ in the pathogenesis of neuroinflammation and neurodegeneration [...] Read more.
The formation of amyloid beta (Aβ) plaques is a central process in the development of Alzheimer’s disease (AD). Although its causative role or the effectiveness of therapeutic targeting is still debated, the key involvement of Aβ in the pathogenesis of neuroinflammation and neurodegeneration in AD is broadly accepted. In this review, we emphasize the role of lipid rafts, both in APP cleavage producing Aβ in neurons and in mediating Aβ inflammatory signaling in microglia. We introduce the term inflammarafts to characterize the Aβ-driven formation of enlarged, cholesterol-rich lipid rafts in activated microglia, which support protein–protein and lipid–protein interactions of inflammatory receptors. Examples reviewed include toll-like receptors (TLR2, TLR4), scavenger receptors (CD36, RAGE), and TREM2. The downstream pathways lead to the production of cytokines and reactive oxygen species, intensifying neuroinflammation and resulting in neuronal injury and cognitive decline. We further summarize emerging therapeutic strategies and emphasize the utility of apolipoprotein A-I binding protein (AIBP) in selective targeting of inflammarafts and attenuation of microglia-driven inflammation. Unlike the targeting of a single inflammatory receptor or a secretase, selective disruption of inflammarafts and preservation of physiological lipid rafts offer a novel approach to targeting multiple components and processes that contribute to neuroinflammation in AD. Full article
Show Figures

Figure 1

17 pages, 4037 KiB  
Article
Identification and Exploration of Pyroptosis-Related Genes in Macrophage Cells Reveal Necrotizing Enterocolitis Heterogeneity Through Single-Cell and Bulk-Sequencing
by Peipei Zhang, Ying Li, Panpan Xu, Peicen Zou, Sihan Sheng, Ruiqi Xiao, Pu Xu, Ying Chen, Yue Du, Lishuang Ma and Yajuan Wang
Int. J. Mol. Sci. 2025, 26(9), 4036; https://doi.org/10.3390/ijms26094036 - 24 Apr 2025
Viewed by 938
Abstract
Necrotizing enterocolitis (NEC) is an acute intestine dysfunction intestinal disorder characterized by inflammation and cell death, including pyroptosis. Previous studies have implicated pyroptosis, particularly via NLRP3 inflammatory activation, and contribute to the development of NEC. However, the genetic and molecular mechanisms underlying pyroptosis [...] Read more.
Necrotizing enterocolitis (NEC) is an acute intestine dysfunction intestinal disorder characterized by inflammation and cell death, including pyroptosis. Previous studies have implicated pyroptosis, particularly via NLRP3 inflammatory activation, and contribute to the development of NEC. However, the genetic and molecular mechanisms underlying pyroptosis in NEC pathogenesis and sequelae remain unclear. Our study aimed to identify the pyroptosis-related cell populations and genes and explore potential therapeutic targets. Single-cell RNA sequencing (scRNA-seq) data were analyzed to identify the cell populations related to NEC and pyroptosis. Weighted gene correlation network analysis (WGCNA) of bulk RNA-seq was performed to identify gene modules associate with pyroptosis. Cell–cell communication was employed to investigate intercellular signaling networks. Gene Set Enrichment Analysis (GSEA) was conducted to compare the pathways enriched in the high and low TREM1-expressing subgroups. Immunofluorescence staining was performed to detect the TREM1+CD163+ macrophages in the intestines. PCR and Western blot were performed to detect the expression of mRNA and proteins in the intestine tissues and cells. scRNA-seq analysis revealed increased macrophage abundance in NEC, with one macrophage cluster (cluster 4) exhibiting a markedly elevated pyroptosis score. WGCNA identified a gene module (MEbrown) that positively correlated with pyroptosis. Five genes (TREM1, TLN1, NOTCH2, MPZL1, and ADA) within this module were identified as potential diagnostic markers of pyroptosis. Furthermore, we identified a novel macrophage subpopulation, TREM1+CD163+, in NEC. Cell–cell communication analysis suggested that TREM1+CD163+ macrophages interact with other cells primarily through the NAMPT/ITGA5/ITGB1 and CCL3/CCR1 pathways. GSEA revealed a significant association between high TREM1 expression and pathways related to pyroptosis, cell proliferation, and inflammation. In vivo and in vitro experiments confirmed an increase in TREM1+CD163+ macrophages in NEC-affected intestines. TREM1 inhibition in THP-1 cells significantly reduced the expression of pro-inflammatory cytokines and pyroptosis-related genes and proteins. We identified the TREM1+CD163+ macrophage population that plays a crucial role in pyroptosis during NEC progression. Our findings elucidate the biological functions and molecular mechanisms of TREM1, demonstrating its upregulation in vivo and pro-pyroptosis effects in vitro. These insights advance our understanding of the role of pyroptosis in NEC pathogenesis and suggest TREM1 is a potential therapeutic target for NEC. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 1714 KiB  
Review
Pro-Fibrotic Macrophage Subtypes: SPP1+ Macrophages as a Key Player and Therapeutic Target in Cardiac Fibrosis?
by Moritz Uhlig, Sebastian Billig, Jan Wienhold and David Schumacher
Cells 2025, 14(5), 345; https://doi.org/10.3390/cells14050345 - 27 Feb 2025
Cited by 1 | Viewed by 2406
Abstract
Cardiac fibrosis is a major driver of heart failure, a leading cause of morbidity and mortality worldwide. Advances in single-cell transcriptomics have revealed the pivotal role of SPP1+ macrophages in the pathogenesis of cardiac fibrosis, positioning them as critical mediators and promising therapeutic [...] Read more.
Cardiac fibrosis is a major driver of heart failure, a leading cause of morbidity and mortality worldwide. Advances in single-cell transcriptomics have revealed the pivotal role of SPP1+ macrophages in the pathogenesis of cardiac fibrosis, positioning them as critical mediators and promising therapeutic targets. SPP1+ macrophages, characterized by elevated expression of secreted phosphoprotein 1 (SPP1) and often co-expressing Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), localize to fibrotic niches in the heart and other organs. These cells interact with activated fibroblasts and myofibroblasts, driving extracellular matrix remodeling and fibrosis progression. Their differentiation is orchestrated by signals such as CXCL4, GM-CSF, and IL-17A, further emphasizing their regulatory complexity. Therapeutic strategies targeting SPP1+ macrophages have shown encouraging preclinical results. Approaches include silencing Spp1 using antibody–siRNA conjugates and modulating key pathways involved in macrophage differentiation. These interventions have effectively reduced fibrosis and improved cardiac function in animal models. The mechanisms underlying SPP1+ macrophage function in cardiac fibrosis provide a foundation for innovative therapies aimed at mitigating pathological remodeling and improving outcomes in patients with heart failure. This emerging field has significant potential to transform the treatment of fibrotic heart disease. Full article
(This article belongs to the Special Issue New Insights into Therapeutic Targets for Cardiovascular Diseases)
Show Figures

Figure 1

23 pages, 1521 KiB  
Review
RhoA/ROCK/GSK3β Signaling: A Keystone in Understanding Alzheimer’s Disease
by Milan M. Medd, Jayden E. Yon and Hongxin Dong
Curr. Issues Mol. Biol. 2025, 47(2), 124; https://doi.org/10.3390/cimb47020124 - 14 Feb 2025
Cited by 1 | Viewed by 1881
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline and loss of neuronal integrity. Emerging evidence suggests that RhoA, Rho-associated coiled-coil kinase (ROCK), and their downstream effector molecule glycogen synthase 3β (GSK3β) interact within a complex signaling pathway (RhoA/ROCK/GSK3β) that [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline and loss of neuronal integrity. Emerging evidence suggests that RhoA, Rho-associated coiled-coil kinase (ROCK), and their downstream effector molecule glycogen synthase 3β (GSK3β) interact within a complex signaling pathway (RhoA/ROCK/GSK3β) that plays a crucial role in the pathogenesis of AD. RhoA, a small GTPase, along with its downstream effector, ROCK, regulates various cellular processes, including actin cytoskeleton dynamics, apoptosis, and synaptic plasticity. GSK3β, a serine/threonine kinase, plays a key role in neuronal function and AD pathology, including the regulation of tau phosphorylation and amyloid-beta cleavage. Overactive GSK3β has been closely linked to tau hyperphosphorylation, neurodegeneration, and the progression of AD. Thus, GSK3β has been considered as a promising therapeutic target for treating AD and mitigating cognitive impairment. However, clinical trials of GSK3β in AD have faced considerable challenges due to the complexity of the specific neuronal inhibition of GSK3β. In this review, we summarize the literature regarding the relationship of RhoA/ROCK and GSK3β signaling pathways in AD pathogenesis. We further discuss recent findings of the sTREM2-transgelin-2 (TG2) axis as a potential mediator of this complex pathway and provide our review on a novel targeting strategy for AD. Full article
Show Figures

Figure 1

30 pages, 5629 KiB  
Article
Ouabain Ameliorates Alzheimer’s Disease-Associated Neuropathology and Cognitive Impairment in FAD4T Mice
by Dan Wang, Jiajia Liu, Qizhi Zhu, Xin Wei, Xiang Zhang, Qi Chen, Yu Zhao, Heng Tang and Weiping Xu
Nutrients 2024, 16(20), 3558; https://doi.org/10.3390/nu16203558 - 20 Oct 2024
Cited by 3 | Viewed by 3043
Abstract
Background: Alzheimer’s disease (AD) is a common clinical neurodegenerative disorder, primarily characterized by progressive cognitive decline and behavioral abnormalities. The hallmark pathological changes of AD include widespread neuronal degeneration, plaques formed by the deposition of amyloid β-protein (Aβ), and neurofibrillary tangles (NFTs). With [...] Read more.
Background: Alzheimer’s disease (AD) is a common clinical neurodegenerative disorder, primarily characterized by progressive cognitive decline and behavioral abnormalities. The hallmark pathological changes of AD include widespread neuronal degeneration, plaques formed by the deposition of amyloid β-protein (Aβ), and neurofibrillary tangles (NFTs). With the acceleration of global aging, the incidence of AD is rising year by year, making it a major global public health concern. Due to the complex pathology of AD, finding effective interventions has become a key focus of research. Ouabain (OUA), a cardiac glycoside, is well-known for its efficacy in treating heart disease. Recent studies have also indicated its potential in AD therapy, although its exact mechanism of action remains unclear. Methods: This study integrates bioinformatics, multi-omics technologies, and in vivo and in vitro experiments to investigate the effects of OUA on the pathophysiological changes of AD and its underlying molecular mechanisms. Results: This study analyzed the expression of the triggering receptor expressed on myeloid cells 2 (TREM2) across different stages of AD using bioinformatics. Serum samples from patients were used to validate soluble TREM2 (sTREM2) levels. Using an Aβ1-42-induced microglial cell model, we confirmed that OUA enhances the PI3K/AKT signaling pathway activation by upregulating TREM2, which reduces neuroinflammation and promotes the transition of microglia from an M1 proinflammatory state to an M2 anti-inflammatory state. To evaluate the in vivo effects of OUA, we assessed the learning and memory capacity of FAD4T transgenic mice using the Morris water maze and contextual fear conditioning tests. We used real-time quantitative PCR, immunohistochemistry, and Western blotting to measure the expression of inflammation-associated cytokines and to assess microglia polarization. OUA enhances cognitive function in FAD4T mice and has been confirmed to modulate microglial M1/M2 phenotypes both in vitro and in vivo. Furthermore, through bioinformatics analysis, molecular docking, and experimental validation, TREM2 was identified as a potential target for OUA. It regulates PI3K/Akt signaling pathway activation, playing a crucial role in OUA-mediated M2 microglial polarization and its anti-inflammatory effects in models involving Aβ1-42-stimulated BV-2 cells and FAD4T mice. Conclusions: These findings indicate that OUA exerts anti-neuroinflammatory effects by regulating microglial polarization, reducing the production of inflammatory mediators, and activating the PI3K/Akt signaling pathway. Given its natural origin and dual effects on microglial polarization and neuroinflammation, OUA emerges as a promising therapeutic candidate for neuroinflammatory diseases such as AD. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Graphical abstract

11 pages, 1871 KiB  
Communication
A Computational Approach in the Systematic Search of the Interaction Partners of Alternatively Spliced TREM2 Isoforms
by Junyi Liang, Aditya Menon, Taylor Tomco, Nisha Bhattarai, Iris Nira Smith, Maria Khrestian, Shane V. Formica, Charis Eng, Matthias Buck and Lynn M. Bekris
Int. J. Mol. Sci. 2024, 25(17), 9667; https://doi.org/10.3390/ijms25179667 - 6 Sep 2024
Viewed by 1684
Abstract
Alzheimer’s disease is the most common form of dementia, characterized by the pathological accumulation of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized as playing a central role in Aβ clearance and microglia [...] Read more.
Alzheimer’s disease is the most common form of dementia, characterized by the pathological accumulation of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized as playing a central role in Aβ clearance and microglia activation in AD. The TREM2 gene transcriptional product is alternatively spliced to produce three different protein isoforms. The canonical TREM2 isoform binds to DAP12 to activate downstream pathways. However, little is known about the function or interaction partners of the alternative TREM2 isoforms. The present study utilized a computational approach in a systematic search for new interaction partners of the TREM2 isoforms by integrating several state-of-the-art structural bioinformatics tools from initial large-scale screening to one-on-one corroborative modeling and eventual all-atom visualization. CD9, a cell surface glycoprotein involved in cell–cell adhesion and migration, was identified as a new interaction partner for two TREM2 isoforms, and CALM, a calcium-binding protein involved in calcium signaling, was identified as an interaction partner for a third TREM2 isoform, highlighting the potential role of cell adhesion and calcium regulation in AD. Full article
(This article belongs to the Special Issue Molecular Informatics and Genomics of Alzheimer’s Disease)
Show Figures

Figure 1

17 pages, 770 KiB  
Review
Phagocytosis Checkpoints in Glioblastoma: CD47 and Beyond
by Amber Afzal, Zobia Afzal, Sophia Bizink, Amanda Davis, Sara Makahleh, Yara Mohamed and Salvatore J. Coniglio
Curr. Issues Mol. Biol. 2024, 46(8), 7795-7811; https://doi.org/10.3390/cimb46080462 - 23 Jul 2024
Cited by 2 | Viewed by 3784
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently [...] Read more.
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a “don’t eat me” signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

21 pages, 8347 KiB  
Article
Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke
by Hongju Lee, Juyeon Lee, Dahee Jung, Harim Oh, Hwakyoung Shin and Byungtae Choi
Int. J. Mol. Sci. 2024, 25(14), 7546; https://doi.org/10.3390/ijms25147546 - 9 Jul 2024
Cited by 5 | Viewed by 2493
Abstract
Therapeutic electrical stimulation, such as transcranial cortical stimulation and peripheral somatosensory stimulation, is used to improve motor function in patients with stroke. We hypothesized that these stimulations exert neuroprotective effects during the subacute phase of ischemic stroke by regulating novel common signaling pathways. [...] Read more.
Therapeutic electrical stimulation, such as transcranial cortical stimulation and peripheral somatosensory stimulation, is used to improve motor function in patients with stroke. We hypothesized that these stimulations exert neuroprotective effects during the subacute phase of ischemic stroke by regulating novel common signaling pathways. Male C57BL/6J mouse models of ischemic stroke were treated with high-definition (HD)-transcranial alternating current stimulation (tACS; 20 Hz, 89.1 A/mm2), HD-transcranial direct current stimulation (tDCS; intensity, 55 A/mm2; charge density, 66,000 C/m2), or electroacupuncture (EA, 2 Hz, 1 mA) in the early stages of stroke. The therapeutic effects were assessed using behavioral motor function tests. The underlying mechanisms were determined using transcriptomic and other biomedical analyses. All therapeutic electrical tools alleviated the motor dysfunction caused by ischemic stroke insults. We focused on electrically stimulating common genes involved in apoptosis and cell death using transcriptome analysis and chose 11 of the most potent targets (Trem2, S100a9, Lgals3, Tlr4, Myd88, NF-kB, STAT1, IL-6, IL-1β, TNF-α, and Iba1). Subsequent investigations revealed that electrical stimulation modulated inflammatory cytokines, including IL-1β and TNF-α, by regulating STAT1 and NF-kB activation, especially in amoeboid microglia; moreover, electrical stimulation enhanced neuronal survival by activating neurotrophic factors, including BDNF and FGF9. Therapeutic electrical stimulation applied to the transcranial cortical- or periphery-nerve level to promote functional recovery may improve neuroprotection by modulating a common neuronal death pathway and upregulating neurotrophic factors. Therefore, combining transcranial cortical and peripheral somatosensory stimulation may exert a synergistic neuroprotective effect, further enhancing the beneficial effects on motor deficits in patients with ischemic stroke. Full article
(This article belongs to the Special Issue New Molecular Insights into Ischemia/Reperfusion)
Show Figures

Figure 1

13 pages, 3755 KiB  
Article
FABP4 Is an Indispensable Factor for Regulating Cellular Metabolic Functions of the Human Retinal Choroid
by Hiroshi Ohguro, Megumi Watanabe, Tatsuya Sato, Nami Nishikiori, Araya Umetsu, Megumi Higashide, Toshifumi Ogawa and Masato Furuhashi
Bioengineering 2024, 11(6), 584; https://doi.org/10.3390/bioengineering11060584 - 7 Jun 2024
Cited by 3 | Viewed by 2083
Abstract
The purpose of the current study was to elucidate the physiological roles of intraocularly present fatty acid-binding protein 4 (FABP4). Using four representative intraocular tissue-derived cell types, including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells [...] Read more.
The purpose of the current study was to elucidate the physiological roles of intraocularly present fatty acid-binding protein 4 (FABP4). Using four representative intraocular tissue-derived cell types, including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells and human ocular choroidal fibroblast (HOCF) cells, the intraocular origins of FABP4 were determined by qPCR analysis, and the intracellular functions of FABP4 were investigated by seahorse cellular metabolic measurements and RNA sequencing analysis using a specific inhibitor for FABP4, BMS309403. Among these four different cell types, FABP4 was exclusively expressed in HOCF cells. In HOCF cells, both mitochondrial and glycolytic functions were significantly decreased to trace levels by BMS309403 in a dose-dependent manner. In the RNA sequencing analysis, 67 substantially up-regulated and 94 significantly down-regulated differentially expressed genes (DEGs) were identified in HOCF cells treated with BMS309403 and those not treated with BMS309403. The results of Gene Ontology enrichment analysis and ingenuity pathway analysis (IPA) revealed that the DEGs were most likely involved in G-alpha (i) signaling, cAMP-response element-binding protein (CREB) signaling in neurons, the S100 family signaling pathway, visual phototransduction and adrenergic receptor signaling. Furthermore, upstream analysis using IPA suggested that NKX2-1 (thyroid transcription factor1), HOXA10 (homeobox A10), GATA2 (gata2 protein), and CCAAT enhancer-binding protein A (CEBPA) were upstream regulators and that NKX homeobox-1 (NKX2-1), SFRP1 (Secreted frizzled-related protein 1) and TREM2 (triggering receptor expressed on myeloid cells 2) were causal network master regulators. The findings in this study suggest that intraocularly present FABP4 originates from the ocular choroid and may be a critical regulator for the cellular homeostasis of non-adipocyte HOCF cells. Full article
(This article belongs to the Special Issue Pathophysiology and Translational Research of Retinal Diseases)
Show Figures

Figure 1

20 pages, 3131 KiB  
Article
sTREM2 Differentially Affects Cytokine Expression in Myeloid-Derived Cell Models via MAPK–JNK Signaling Pathway
by Ryan Arsenault, Steven Marshall, Patrick Salois, Qiao Li and Wandong Zhang
Biology 2024, 13(2), 87; https://doi.org/10.3390/biology13020087 - 30 Jan 2024
Cited by 7 | Viewed by 3329
Abstract
TREM2 is a critical innate immune receptor primarily expressed on myeloid-derived cells, such as microglia and macrophages. Mutations in TREM2 are linked to several neurodegenerative diseases including Alzheimer’s disease (AD). TREM2 can be cleaved from the cell membrane and released as soluble TREM2 [...] Read more.
TREM2 is a critical innate immune receptor primarily expressed on myeloid-derived cells, such as microglia and macrophages. Mutations in TREM2 are linked to several neurodegenerative diseases including Alzheimer’s disease (AD). TREM2 can be cleaved from the cell membrane and released as soluble TREM2 (sTREM2). sTREM2 levels are shown to peak prior to AD, with its levels fluctuating throughout disease progression. However, the mechanism by which sTREM2 may affect innate immune responses is largely uncharacterized. In this study, we investigated whether sTREM2 can induce inflammatory response in myeloid-derived THP-1 monocytes and macrophages and characterized the signaling mechanisms involved. Our results show that sTREM2 was capable of stimulating the expression of several inflammatory cytokines in THP-1 cells throughout the time course of 2 h to 8 h but inducing anti-inflammatory cytokine expression at later time points. A TREM2 antibody was capable of inhibiting the expression of some cytokines induced by sTREM2 but enhancing others. The complex of sTREM2/TREM2 antibody was shown to enhance IL-1β expression, which was partially blocked by an NLRP3 specific inhibitor, indicating that the complex activated the NRLP3 inflammasome pathway. sTREM2 was also shown to have differential effects on cytokine expression in M0, M1, and M2 macrophages differentiated from THP-1 cells. sTREM2 has a more stimulating effect on cytokine expression in M0 macrophages, less of an effect on M2 macrophages, and some inhibitory effects on cytokine expression in M1 macrophages at early time points. Analyses of several signaling pathways revealed that sTREM2-induced expression of cytokines occurs mainly through MAPK–JNK signaling. Our work reveals differential effects of sTREM2 on cytokine expression profiles of THP-1 cells and macrophages and demonstrates that the MAPK–JNK signaling pathway is mainly responsible for sTREM2-induced cytokine expression. Full article
(This article belongs to the Special Issue Activation of Macrophages)
Show Figures

Figure 1

19 pages, 737 KiB  
Review
Comparative Insight into Microglia/Macrophages-Associated Pathways in Glioblastoma and Alzheimer’s Disease
by Jian Shi and Shiwei Huang
Int. J. Mol. Sci. 2024, 25(1), 16; https://doi.org/10.3390/ijms25010016 - 19 Dec 2023
Cited by 14 | Viewed by 3925
Abstract
Microglia and macrophages are pivotal to the brain’s innate immune response and have garnered considerable attention in the context of glioblastoma (GBM) and Alzheimer’s disease (AD) research. This review delineates the complex roles of these cells within the neuropathological landscape, focusing on a [...] Read more.
Microglia and macrophages are pivotal to the brain’s innate immune response and have garnered considerable attention in the context of glioblastoma (GBM) and Alzheimer’s disease (AD) research. This review delineates the complex roles of these cells within the neuropathological landscape, focusing on a range of signaling pathways—namely, NF-κB, microRNAs (miRNAs), and TREM2—that regulate the behavior of tumor-associated macrophages (TAMs) in GBM and disease-associated microglia (DAMs) in AD. These pathways are critical to the processes of neuroinflammation, angiogenesis, and apoptosis, which are hallmarks of GBM and AD. We concentrate on the multifaceted regulation of TAMs by NF-κB signaling in GBM, the influence of TREM2 on DAMs’ responses to amyloid-beta deposition, and the modulation of both TAMs and DAMs by GBM- and AD-related miRNAs. Incorporating recent advancements in molecular biology, immunology, and AI techniques, through a detailed exploration of these molecular mechanisms, we aim to shed light on their distinct and overlapping regulatory functions in GBM and AD. The review culminates with a discussion on how insights into NF-κB, miRNAs, and TREM2 signaling may inform novel therapeutic approaches targeting microglia and macrophages in these neurodegenerative and neoplastic conditions. This comparative analysis underscores the potential for new, targeted treatments, offering a roadmap for future research aimed at mitigating the progression of these complex diseases. Full article
(This article belongs to the Special Issue Biomechanics and Molecular Research on Glioblastoma)
Show Figures

Figure 1

Back to TopTop