Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = TRAIL signalling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 406 KB  
Article
Cognitive Flexibility Predicts Live-Fire Rifle Marksmanship in Airborne Cadets: A Pilot Study
by Dariusz Jamro, John A. Dewey, Grzegorz Żurek, Rui Lucena and Maciej Lachowicz
Brain Sci. 2025, 15(11), 1150; https://doi.org/10.3390/brainsci15111150 - 27 Oct 2025
Viewed by 358
Abstract
Background: Executive functions may underpin performance in live-fire tasks, whereas evidence for global physical fitness is mixed. We quantified the associations between cognitive flexibility (CF), inhibitory control (IC), overall physical fitness, and rifle marksmanship in cadets, and derived a parsimonious predictive model. Methods: [...] Read more.
Background: Executive functions may underpin performance in live-fire tasks, whereas evidence for global physical fitness is mixed. We quantified the associations between cognitive flexibility (CF), inhibitory control (IC), overall physical fitness, and rifle marksmanship in cadets, and derived a parsimonious predictive model. Methods: Twenty second-year male airborne cadets (mean age 21.7 ± 2.2 years) completed a live-fire Basic Rifle Marksmanship (BRM) qualification (40 targets at 50–300 m); the Color Trails Test (CTT-1 and CTT-2; interference index) to index CF and processing speed; a stop-signal–style task (CogniFit) to assess IC indexed by NO-GO accuracy and GO-trial response time; and the Army Combat Fitness Test (ACFT). Associations were examined with Spearman correlations. Multiple linear regression with backward elimination and Bayesian model comparison evaluated predictive models. Results: Faster CTT-2 performance was associated with higher BRM scores (ρ = −0.48, p = 0.032), with a similar association for CTT-1 (ρ = −0.46, p = 0.042). The best-fitting regression model included CTT-2 time and IC–accuracy (adjusted R2 = 0.345; RMSE = 7.03), with CTT-2 time the only significant predictor of BRM (b = −0.330, p = 0.006). Bayesian model comparison independently favored a parsimonious CTT-2–only model (P(M|data) = 0.222; BFM = 5.41; BF10 = 1.00; R2 = 0.352). ACFT scores were not significantly associated with BRM. Conclusions: CF and processing speed are key correlates of live–fire rifle marksmanship in cadets, suggesting value in integrating executive–function elements into marksmanship training. Replication in larger cohorts is warranted. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

34 pages, 1919 KB  
Systematic Review
Hybrid Rule-Based and Reinforcement Learning for Urban Signal Control in Developing Cities: A Systematic Literature Review and Practice Recommendations for Indonesia
by Freddy Kurniawan, Harliyus Agustian, Denny Dermawan, Riani Nurdin, Nurfi Ahmadi and Okto Dinaryanto
Appl. Sci. 2025, 15(19), 10761; https://doi.org/10.3390/app151910761 - 6 Oct 2025
Viewed by 953
Abstract
Hybrid rule-based and reinforcement-learning (RL) signal control is gaining traction for urban coordination by pairing interpretable cycles, splits, and offsets with adaptive, data-driven updates. However, systematic evidence on their architectures, safeguards, and deployment prerequisites remains scarce, motivating this review that maps current hybrid [...] Read more.
Hybrid rule-based and reinforcement-learning (RL) signal control is gaining traction for urban coordination by pairing interpretable cycles, splits, and offsets with adaptive, data-driven updates. However, systematic evidence on their architectures, safeguards, and deployment prerequisites remains scarce, motivating this review that maps current hybrid controller designs under corridor coordination. Searches across major databases and arXiv (2000–2025) followed PRISMA guidance; screening is reported in the flow diagram. Eighteen studies were included, nine with quantitative comparisons, spanning simulation and early field pilots. Designs commonly use rule shields, action masking, and bounded adjustments of offsets or splits; effectiveness is assessed via arrivals on green, Purdue Coordination diagrams, delay, and travel time. Across the 18 studies, the majority reported improvements in arrivals on green, delay, travel time, or related coordination metrics compared to fixed-time or actuated baselines, while only a few showed neutral or mixed effects and very few indicated deterioration. These results indicate that hybrid safeguards are generally associated with positive operational gains, especially under heterogeneous traffic conditions. Evidence specific to Indonesia remains limited; this review addresses that gap and offers guidance transferable to other developing-country contexts with similar sensing, connectivity, and institutional constraints. Practical guidance synthesizes sensing choices and fallbacks, controller interfaces, audit trails, and safety interlocks into a deployment checklist, with a staged roadmap for corridor roll-outs. This paper is not only a systematic review but also develops a practice-oriented framework tailored to Indonesian corridors, ensuring that evidence synthesis and practical recommendations are clearly distinguished. Full article
Show Figures

Figure 1

22 pages, 8250 KB  
Article
Field Measurement and Characteristics Analysis of Transverse Load of High-Speed Train Bogie Frame
by Chengxiang Ji, Yuhe Gao, Zhiming Liu and Guangxue Yang
Machines 2025, 13(10), 905; https://doi.org/10.3390/machines13100905 - 2 Oct 2025
Viewed by 511
Abstract
This study investigates the transverse loads acting on high-speed train bogie frames under actual service conditions. To enable direct identification, the locating arms were instrumented as bending sensors and calibrated under realistic lateral-stop constraints, ensuring robustness of the measurement channels. Field tests were [...] Read more.
This study investigates the transverse loads acting on high-speed train bogie frames under actual service conditions. To enable direct identification, the locating arms were instrumented as bending sensors and calibrated under realistic lateral-stop constraints, ensuring robustness of the measurement channels. Field tests were conducted on a CR400BF high-speed EMU over a 226 km route at six speed levels (260–390 km/h), with gyroscope and GPS signals employed to recognize typical operating conditions, including straights, curves, and switches (straight movement and diverging movements). The results show that the proposed recognition method achieves high accuracy, enabling rapid and effective identification and localization of typical operating conditions. Under switch conditions, the bogie frame transverse loads are characterized by low-frequency, large-amplitude fluctuations, with overall RMS levels being higher in diverging switches and straight-through depot switches. Curve parameters and speed levels exert significant influence on the amplitude of the transverse-load trend component. On curves with identical parameters, the trend-component amplitude exhibits a quadratic nonlinear relationship with train speed, decreasing first and then increasing in the opposite direction as speed rises. In mainline curves and straight sections, the RMS values of transverse loads on Axles 1 and 2 scale proportionally with speed level, with the leading axle in the direction of travel consistently producing higher transverse loads than the trailing axle. When load samples are balanced across both running directions, the transverse load spectra of Axles 1 and 2 at the same speed level show negligible differences, while the spectrum shape index increases proportionally with speed level. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

17 pages, 3402 KB  
Article
Context-Dependent Modulation of Breast Cancer Cell E-Cadherin Expression, Mitogenesis, and Immuno-Sensitivity by Immortalized Human Mesenchymal Stem Cells In Vitro
by Bei Dai, Neha Atale, Amanda M. Clark and Alan Wells
Cells 2025, 14(17), 1316; https://doi.org/10.3390/cells14171316 - 26 Aug 2025
Viewed by 937
Abstract
The major event that leads to death from breast cancer (BrCa) is the emergence of micrometastases into lethal growing metastases. While it is still uncertain what regulates the cell fate decision between remaining in dormancy and aggressive proliferative progression, accumulating evidence demonstrates a [...] Read more.
The major event that leads to death from breast cancer (BrCa) is the emergence of micrometastases into lethal growing metastases. While it is still uncertain what regulates the cell fate decision between remaining in dormancy and aggressive proliferative progression, accumulating evidence demonstrates a major role for the metastatic microenvironment. One area of interest is that of tissue and circulating mesenchymal stem cells (MSCs), which have been shown to alter the proliferative and metastatic potential of BrCa. Herein, we investigate how these cells impact the phenotype of metastatic BrCa. As the disseminated BrCa cells initially adopt an epithelial phenotype in ectopic organs, one that is dormant in having limited proliferation and being immune-silent, interactions that revert the disseminated metastatic BrCa to aggressive mesenchymal phenotypes, would be a driver of metastatic progression. BrCa cells exhibited phenotypic changes including increased E-cadherin expression, altered proliferation, and differential sensitivity to TRAIL-induced apoptosis when directly co-cultured with immortalized human MSCs, compared to the BrCa cells not co-cultured. These regulatory effects were dependent upon the BrCa cell’s epithelial–mesenchymal status and involved distinct juxtacrine and paracrine signaling mechanisms, as evidenced by differing responses in direct co-culture, conditioned medium, and Transwell systems. Our findings highlight the complex and context-dependent roles of MSCs in BrCa progression, improving our understanding of tumor-stroma interactions and laying groundwork for future therapeutic exploration. Full article
Show Figures

Figure 1

17 pages, 3411 KB  
Article
Pre-Courtship Behavior of Proholopterus chilensis (Coleoptera: Cerambycidae) in a Nothofagus obliqua (Nothofagaceae) Forest
by Diego Arraztio, Amanda Huerta, Ramón Rebolledo, Americo Contreras and Tomislav Curkovic
Insects 2025, 16(8), 847; https://doi.org/10.3390/insects16080847 - 15 Aug 2025
Viewed by 902
Abstract
The pre-courtship behavior of Proholopterus chilensis on Nothofagus obliqua trees was recorded for the first time, documenting a putative female “calling” behavior and the consequent male “oriented search,” enabling the description of behavioral units, sequences, frequencies, and degrees of stereotypy. Post-resting activity in [...] Read more.
The pre-courtship behavior of Proholopterus chilensis on Nothofagus obliqua trees was recorded for the first time, documenting a putative female “calling” behavior and the consequent male “oriented search,” enabling the description of behavioral units, sequences, frequencies, and degrees of stereotypy. Post-resting activity in both sexes began with walking and grooming during the first hour of the scotophase, following a period of daytime inactivity. Subsequently, females extended their ovipositor both horizontally and vertically, alternating between contact with the tree substrate and, simultaneously, walking the surface (=putative calling behavior), while males became active, extending their antennae perpendicularly to the longitudinal body axis. In response to the putative call, males exhibited oriented flight and hasty walking that followed the trajectory and direction previously taken by females on the substrate, ultimately leading to their location. Statistical analysis of behavioral sequences and the stereotypy index indicated that both behaviors were non-random and partially stereotyped. These findings are consistent with previous chemical analyses of female aerations and terminalia performed by our research group, which identified semiochemicals likely functioning as long-range sex pheromones guiding males to the vicinity of the female’s tree, as well as potential trail pheromones facilitating close-range localization. This dual signaling system seems necessary to the high mobility displayed by females during calling behavior, characterized by frequent and extended bidirectional vertical walks along the trunk, which may enhance signal dispersal and/or reduce predation risk. If confirmed, this would represent a novel sexual encounter mechanism within Cerambycidae. Full article
Show Figures

Figure 1

27 pages, 13385 KB  
Article
In-Field Load Acquisitions on a Variable Chamber Round Baler Using Instrumented Hub Carriers and a Dynamometric Towing Pin
by Filippo Coppola, Andrea Ruffin and Giovanni Meneghetti
Appl. Sci. 2025, 15(15), 8579; https://doi.org/10.3390/app15158579 - 1 Aug 2025
Viewed by 449
Abstract
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately [...] Read more.
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately calibrated strain gauge bridges. Similarly, the baler was equipped with a dynamometric towing pin, instrumented with strain gauge sensors and calibrated in the laboratory, which replaced the original pin connecting the baler and the tractor during the in-field load acquisitions. In both cases, the calibration tests returned the relationship between applied forces and output signals of the strain gauge bridges. Multiple in-field load acquisitions were carried out under typical maneuvers and operating conditions. The synchronous acquisition of a video via an onboard camera and Global Positioning System (GPS) signal allowed to observe the behaviour of the baler in correspondence of particular trends of the vertical and horizontal loads and to point out the most demanding maneuver in view of the fatigue resistance of the baler. Finally, through the application of a rainflow cycle counting algorithm according to ASTM E1049-85, the load spectrum for each maneuver was derived. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

24 pages, 1605 KB  
Article
Quantum-Secure Coherent Optical Networking for Advanced Infrastructures in Industry 4.0
by Ofir Joseph and Itzhak Aviv
Information 2025, 16(7), 609; https://doi.org/10.3390/info16070609 - 15 Jul 2025
Viewed by 914
Abstract
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory [...] Read more.
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory systems. However, they introduce multilayer security challenges—ranging from hardware synchronization gaps to protocol overhead manipulation. Moreover, the rise of large-scale quantum computing intensifies these threats by potentially breaking classical key exchange protocols and enabling the future decryption of stored ciphertext. In this paper, we present a systematic vulnerability analysis of coherent optical networks that use OTU4 framing, Media Access Control Security (MACsec), and 400G ZR+ transceivers. Guided by established risk assessment methodologies, we uncover critical weaknesses affecting management plane interfaces (e.g., MDIO and I2C) and overhead fields (e.g., Trail Trace Identifier, Bit Interleaved Parity). To mitigate these risks while preserving the robust data throughput and low-latency demands of industrial automation, we propose a post-quantum security framework that merges spectral phase masking with multi-homodyne coherent detection, strengthened by quantum key distribution for key management. This layered approach maintains backward compatibility with existing infrastructure and ensures forward secrecy against quantum-enabled adversaries. The evaluation results show a substantial reduction in exposure to timing-based exploits, overhead field abuses, and cryptographic compromise. By integrating quantum-safe measures at the optical layer, our solution provides a future-proof roadmap for network operators, hardware vendors, and Industry 4.0 stakeholders tasked with safeguarding next-generation manufacturing and engineering processes. Full article
Show Figures

Figure 1

22 pages, 1603 KB  
Article
Swarm Intelligence for Collaborative Play in Humanoid Soccer Teams
by Farzad Nadiri and Ahmad B. Rad
Sensors 2025, 25(11), 3496; https://doi.org/10.3390/s25113496 - 31 May 2025
Viewed by 1105
Abstract
Humanoid soccer robots operate in dynamic, unpredictable, and often partially observable settings. Effective teamwork, sound decision-making, and real-time collaboration are critical to competitive performance. In this paper, a biologically inspired swarm-intelligence framework for humanoid soccer is proposed, comprising (1) a low-overhead communication User [...] Read more.
Humanoid soccer robots operate in dynamic, unpredictable, and often partially observable settings. Effective teamwork, sound decision-making, and real-time collaboration are critical to competitive performance. In this paper, a biologically inspired swarm-intelligence framework for humanoid soccer is proposed, comprising (1) a low-overhead communication User Datagram Protocol (UDP) optimized for minimal bandwidth and graceful degradation under packet loss; (2) an Ant Colony Optimization (ACO)-based decentralized role allocation mechanism that dynamically assigns attackers, midfielders, and defenders based on real-time pheromone trails and local fitness metrics; (3) a Reynolds’ flocking-based formation control scheme, modulated by role-specific weighting to ensure fluid transitions between offensive and defensive formations; and (4) an adaptive behavior layer integrating lightweight reinforcement signals and proactive failure-recovery strategies to maintain cohesion under robot dropouts. Simulations demonstrate a 25–40% increase in goals scored and an 8–10% boost in average ball possession compared to centralized baselines. Full article
(This article belongs to the Special Issue Robot Swarm Collaboration in the Unstructured Environment)
Show Figures

Figure 1

15 pages, 1909 KB  
Article
Early Immunological and Inflammation Proteomic Changes in Elderly COVID-19 Patients Predict Severe Disease Progression
by Shiyang Liu, Wen Xu, Bo Tu, Zhiqing Xiao, Xue Li, Lei Huang, Xin Yuan, Juanjuan Zhou, Xinxin Yang, Junlian Yang, De Chang, Weiwei Chen and Fu-Sheng Wang
Biomedicines 2025, 13(5), 1162; https://doi.org/10.3390/biomedicines13051162 - 10 May 2025
Viewed by 1134
Abstract
Background: Elderly patients infected with SARS-CoV-2 are at higher risk of developing cytokine storm and severe outcomes; however, specific immunological and proteomic biomarkers for early prediction remain unclear in this vulnerable group. Methods: We enrolled 182 elderly COVID-19 patients from the Chinese PLA [...] Read more.
Background: Elderly patients infected with SARS-CoV-2 are at higher risk of developing cytokine storm and severe outcomes; however, specific immunological and proteomic biomarkers for early prediction remain unclear in this vulnerable group. Methods: We enrolled 182 elderly COVID-19 patients from the Chinese PLA General Hospital between November 2022 and April 2023, categorizing them based on progression to respiratory failure requiring mechanical ventilation (defined as severe progression). Olink proteomic analysis was performed on admission serum from 40 propensity score-matched samples, with differentially expressed proteins (DEPs) validated by cytometric bead array (CBA) in 178 patients. To predict severe progression, a model was developed using a 70% training set and validated on a 30% validation set. LASSO regression screened features followed by logistic regression and receiver operating characteristic (ROC) analysis to optimize the model by incrementally incorporating features ranked by random forest importance. Results: Elderly patients progressing to severe COVID-19 exhibited early immune dysregulation, including neutrophilia, lymphopenia, monocytopenia, elevated procalcitonin (PCT), C-reactive protein (CRP), interleukin-6 (IL-6), neutrophil-to-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII), as well as coagulation dysfunction and multi-organ injury. Proteomics identified a set of biomarkers, including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and revealed disruptions in signaling pathways, including the mTOR and VEGF signaling pathways. The optimal predictive model, which incorporated PCT, IL-6, monocyte percentage, lymphocyte count, and TRAIL, achieved an area under curve (AUC) of 0.870 (0.729–1.000) during validation. TRAIL levels negatively correlated with fibrinogen (p < 0.05). Conclusions: Elderly COVID-19 patients with severe progression demonstrate early immune dysregulation, hyperinflammation, coagulation dysfunction, and multi-organ injury. The model we proposed effectively predicts disease progression in elderly COVID-19 patients, providing potential biomarkers for early clinical risk stratification in this vulnerable population. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

19 pages, 5279 KB  
Article
Drone Noise Reduction Using Serration–Finlet Blade Design and Its Psychoacoustic and Social Impacts
by Yingyin Shen, Yuanqing Bai, Xiao Liu and Bin Zang
Sustainability 2025, 17(8), 3451; https://doi.org/10.3390/su17083451 - 12 Apr 2025
Cited by 1 | Viewed by 3539
Abstract
Unmanned aerial vehicles, particularly drones, have been increasingly deployed for different tasks in the community. They have become an important part of the economic and social benefits that society is exploiting from modern technology development. However, efforts are still required to further develop [...] Read more.
Unmanned aerial vehicles, particularly drones, have been increasingly deployed for different tasks in the community. They have become an important part of the economic and social benefits that society is exploiting from modern technology development. However, efforts are still required to further develop technologies which can mitigate the negative impacts. Among them, drone noise is considered a major health concern for the community. The present study undertakes an experimental investigation of the effectiveness of blade modifications on drone noise in an aeroacoustic wind tunnel facility. A quadcopter drone is programmed to operate in both hover and forward flights. Three modified blade configurations, including trailing-edge serrations combined serration–finlets, and an unmodified (baseline) blade, are manufactured. The far-field noise signals are recorded by two polar microphone arrays to quantify both the magnitude and directivity. The results show that all modified blades are able to reduce the drone noise at mid-to-high frequencies in both hover and forward flights, and this leads to a noticeable reduction in the overall sound pressure level. More importantly, the combined serration–finlet configuration outperforms all the other blades. Psychoacoustic analysis is also performed using the far-field acoustic time series. Interestingly, only the serration–finlet combination demonstrates a consistent reduction in the psychoacoustic annoyance levels, suggesting that it is important to use metrics from both acoustic and psychoacoustic analysis when developing noise mitigation strategies in the socio-economic context. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

15 pages, 76510 KB  
Technical Note
Automatic Detection and Identification of Underdense Meteors Based on YOLOv8n-BP Model
by Siyuan Chen, Guobin Yang, Chunhua Jiang, Tongxin Liu and Xuhui Liu
Remote Sens. 2025, 17(8), 1375; https://doi.org/10.3390/rs17081375 - 11 Apr 2025
Viewed by 784
Abstract
Every day, millions of meteoroids enter the atmosphere and ablate, forming a long plasma trail. It is a strongly scattering object for electromagnetic waves and can be effectively detected by meteor radar at altitudes between 70 km and 140 km. Its echo typically [...] Read more.
Every day, millions of meteoroids enter the atmosphere and ablate, forming a long plasma trail. It is a strongly scattering object for electromagnetic waves and can be effectively detected by meteor radar at altitudes between 70 km and 140 km. Its echo typically has Fresnel oscillation characteristics. Most of the traditional detection methods rely on determining the threshold value of the signal-to-noise ratio (SNR) and solving parameters to recognize meteor echoes, making them highly susceptible to interference. In this paper, a neural network model, YOLOv8n-BP, was proposed for detecting the echoes of underdense meteors by identifying them from their echo characteristics. The model combines the strengths of both YOLOv8 and back propagation (BP) neural networks to detect underdense meteor echoes from Range-Time-Intensity (RTI) plots where multiple echoes are present. In YOLOv8, the n-type parameter represents the lightweight version of the model (YOLOv8n), which is the smallest and fastest variant in the YOLOv8 series, specifically designed for resource-constrained scenarios. Experiments show that YOLOv8n has excellent recognition ability for underdense meteor echoes in RTI plots and can automatically extract underdense meteor echoes without the influence of radio-frequency interference (RFI) and disturbance signals. Limited by the labeling error of the dataset, YOLOv8 is not precise enough in recognizing the head and tail of meteors in the radar echograms, which may result in the extraction of imperfect echoes. Utilizing the Fresnel oscillation properties of meteor echoes, a BP network based on a Gaussian activation function is designed in this paper to enable it to detect meteor head and tail positions more accurately. The YOLOv8n-BP model can quickly and accurately detect and extract underdense meteor echoes from RTI plots, providing correct data for meteor parameters such as radial velocities and diffusion coefficients, which are used to allow wind field calculations and estimate atmospheric temperature. Full article
Show Figures

Figure 1

19 pages, 1656 KB  
Article
Ultrasonic Time-of-Flight Diffraction Imaging Enhancement for Pipeline Girth Weld Testing via Time-Domain Sparse Deconvolution and Frequency-Domain Synthetic Aperture Focusing
by Eryong Wu, Ye Han, Bei Yu, Wei Zhou and Shaohua Tian
Sensors 2025, 25(6), 1932; https://doi.org/10.3390/s25061932 - 20 Mar 2025
Cited by 2 | Viewed by 888
Abstract
Ultrasonic TOFD imaging, as an important non-destructive testing method, has a wide range of applications in pipeline girth weld inspection and testing. Due to the limited bandwidth of ultrasonic transducers, near-surface defects in the weld are masked and cannot be recognized, resulting in [...] Read more.
Ultrasonic TOFD imaging, as an important non-destructive testing method, has a wide range of applications in pipeline girth weld inspection and testing. Due to the limited bandwidth of ultrasonic transducers, near-surface defects in the weld are masked and cannot be recognized, resulting in poor longitudinal resolution. Affected by the inherent diffraction effect of scattered acoustic waves, defect images have noticeable trailing, resulting in poor transverse resolution of TOFD imaging and making quantitative defect detection difficult. In this paper, based on the assumption of the sparseness of ultrasonic defect distribution, by constructing a convolutional model of the ultrasonic TOFD signal, the Orthogonal Matching Pursuit (OMP) sparse deconvolution algorithm is utilized to enhance the longitudinal resolution. Based on the synthetic aperture acoustic imaging model, in the wavenumber domain, backpropagation inference is implemented through phase transfer technology to eliminate the influence of diffraction effects and enhance transverse resolution. On this basis, the time-domain sparse deconvolution and frequency-domain synthetic aperture focusing methods mentioned above are combined to enhance the resolution of ultrasonic TOFD imaging. The simulation and experimental results indicate that this technique can outline the shape of defects with fine detail and improve image resolution by about 35%. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

12 pages, 731 KB  
Article
Impact of Polyphenol-Rich Nutraceuticals on Cognitive Function and Neuroprotective Biomarkers: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
by Juan Ángel Carrillo, Raúl Arcusa, Raquel Xandri-Martínez, Begoña Cerdá, Pilar Zafrilla and Javier Marhuenda
Nutrients 2025, 17(4), 601; https://doi.org/10.3390/nu17040601 - 7 Feb 2025
Cited by 13 | Viewed by 8412
Abstract
Background: Recent studies have highlighted the neuroprotective effects of polyphenols, particularly their role in enhancing brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) activity. This study aimed to evaluate the relationship between BDNF and CREB levels and cognitive performance in individuals [...] Read more.
Background: Recent studies have highlighted the neuroprotective effects of polyphenols, particularly their role in enhancing brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) activity. This study aimed to evaluate the relationship between BDNF and CREB levels and cognitive performance in individuals undergoing a polyphenol-rich dietary intervention. Methods: A randomized, crossover, double-blind, placebo-controlled clinical trial was conducted with 92 participants. The intervention involved the daily intake of an encapsulated concentrate of fruit, vegetable, and berry juice powders (Juice Plus+ Premium®) over two 16-week periods, separated by a 4-week washout phase. Cognitive function was assessed using the Stroop Test, Trail Making Test, and Reynolds Intellectual Screening Test (RIST). The plasma levels of CREB and BDNF were measured using ELISA. Results: The polyphenol-rich product significantly improved cognitive performance, as evidenced by higher scores in the Stroop Test and RIST, compared to the placebo. Additionally, the plasma levels of CREB and BDNF were notably elevated in the product condition, indicating enhanced neuroprotective activity. Conclusions: The findings suggest that polyphenol-rich nutraceuticals can modulate neurobiological mechanisms underlying cognitive improvements, primarily through the reduction of oxidative stress and the regulation of signaling pathways associated with synaptic plasticity. These results support the potential of dietary polyphenols in promoting cognitive health and preventing neurodegenerative diseases. Full article
(This article belongs to the Special Issue Sensory Nutrition and Health Impact on Metabolic and Brain Disorders)
Show Figures

Figure 1

18 pages, 8631 KB  
Article
Flow Characteristics and Pressure Pulsation Analysis of Cavitation Induced in a Double-Volute Centrifugal Pump
by Yongsha Tu, Xueying Zhao, Lifeng Lu, Wenjie Zhou, Siwei Li, Jin Dai, Zhongzan Wang, Yuan Zheng and Chunxia Yang
Water 2025, 17(3), 445; https://doi.org/10.3390/w17030445 - 5 Feb 2025
Cited by 3 | Viewed by 1570
Abstract
Cavitation is a complex multiphase flow phenomenon, and the generation of transient phase transitions between liquid and vapor during cavitation development leads to multi-scale vortex motion. The transient cavitation dynamics and centrifugal pump’s rotor–stator interaction will induce pressure fluctuations in the impeller and [...] Read more.
Cavitation is a complex multiphase flow phenomenon, and the generation of transient phase transitions between liquid and vapor during cavitation development leads to multi-scale vortex motion. The transient cavitation dynamics and centrifugal pump’s rotor–stator interaction will induce pressure fluctuations in the impeller and the volute fluid of the centrifugal pump, resulting in a complex flow field structure. Based on the Schnerr–Sauer cavitation model and SST k-ω turbulence model, this paper studies the transient characteristics of the cavitation-induced unsteady flow in the centrifugal pump and the excitation response to the pressure pulsation in the volute under different flow conditions, taking the large vertical double-volute centrifugal pump as the research object. The results indicate the following: As the impeller rotates, in the external excitation response, the jet-wake flow structure at the centrifugal pump blade outlet shows an increase in the blade frequency signal. This is evident near the measurement points of the volute tongue and separator. When severe cavitation occurs, the maximum amplitude at the blade frequency in the volute shifts from the pump tongue (30°) to the downstream of the tongue (45°). The value of fpmax is 3.1 times that when NPSHa = 8.88 m. By applying the Omega vortex identification method, it can be seen that the interaction between the vortices at the blade trailing edge and the stable vortex in the volute tongue undergoes a process of elongation, fusion, separation, and recovery. This represents the downstream influence of the impeller on the volute. When Q = 0.9Qd, the process of the blade passage vortex tail detaching and dissipating in the impeller flow path can be observed, demonstrating the upstream influence of the volute on the impeller. Full article
(This article belongs to the Special Issue Advanced Numerical Approaches for Multiphase and Cavitating Flows)
Show Figures

Figure 1

21 pages, 1714 KB  
Review
The Role of Osteoprotegerin in Breast Cancer: Genetic Variations, Tumorigenic Pathways, and Therapeutic Potential
by Janan Husain Radhi, Ahmed Mohsen Abbas El-Hagrasy, Sayed Husain Almosawi, Abdullatif Alhashel and Alexandra E. Butler
Cancers 2025, 17(3), 337; https://doi.org/10.3390/cancers17030337 - 21 Jan 2025
Cited by 1 | Viewed by 1904
Abstract
Introduction: Osteoprotegerin (OPG), encoded by the TNFRSF11B gene, is linked to the development of breast cancer via several pathways, including interactions with the receptor activator of nuclear factor-κB (RANK) ligands, apoptosis-inducing proteins like TRAIL, and genetic variations such as single nucleotide polymorphisms (SNPs), [...] Read more.
Introduction: Osteoprotegerin (OPG), encoded by the TNFRSF11B gene, is linked to the development of breast cancer via several pathways, including interactions with the receptor activator of nuclear factor-κB (RANK) ligands, apoptosis-inducing proteins like TRAIL, and genetic variations such as single nucleotide polymorphisms (SNPs), directly altering gene expression. This review aims to investigate the role of OPG expression in breast cancer. Methods: A comprehensive literature search was conducted using PubMed Medline, Google Scholar, and ScienceDirect. Only full-text English publications from inception to September 2024 were included. Results: Studies have demonstrated that certain SNPs in the OPG gene, specifically rs3102735 and rs2073618, are linked to a higher risk of breast cancer development. Additionally, OPG’s function as a TRAIL decoy receptor may inhibit the death of cancer cells. Furthermore, OPG in the serum and its interactions with BRCA mutations are being investigated for their potential influence on breast cancer progression. Studies have found that OPG promotes tumorigenesis by enhancing cell proliferation, angiogenesis, and aneuploidy in normal mammary epithelial cells. Moreover, OPG mediates the tumor-promoting effects of interleukin-1 beta and may serve as a biomarker for breast cancer risk, particularly in BRCA1 mutation carriers, through its role in dysregulated RANK signaling. Lastly, the use of recombinant OPG in mouse models has been found to exert anti-tumor effects. Conclusions: In this review, the role of OPG in breast cancer is examined. OPG has a multifaceted role in breast cancer tumorigenesis and exerts its effects through genetic variations (SNPs), interactions with TNF-related apoptosis-inducing ligand (TRAIL), and the modulation of the pro-tumorigenic microenvironment effects of angiogenesis, cell survival, and metastasis. Additionally, OPG’s dual role as a tumor suppressor and promoter serves as a possible therapeutic target to enhance apoptosis, limit bone metastasis, and modulate the tumor microenvironment. Whilst much is now known, further studies are necessary to fully delineate the role of OPG. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

Back to TopTop