Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = TRAF6-mediated MAPK/NF-κB signaling pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3712 KiB  
Article
The Brucella Effector Protein BspF Crotonylates TRIM38 to Inhibit NF-κB and MAPK Signaling Pathway
by Huan Zhang, Yukai Xing, Jinying Zhu, Sijiao Wu, Jingbo Gao, Yuqi Wang, Ze Yu, Ang Li, Yuzhuo Li, Xiaoyue Chen and Zeliang Chen
Int. J. Mol. Sci. 2025, 26(8), 3573; https://doi.org/10.3390/ijms26083573 - 10 Apr 2025
Cited by 1 | Viewed by 604
Abstract
The type IV secretion system (T4SS) is an important virulence factor of Brucella. T4SS secretes 16 effector proteins, which affect the intracellular transport of Brucella-containing vacuoles and regulate the host immune response, helping Brucella survive and replicate in host cells. In [...] Read more.
The type IV secretion system (T4SS) is an important virulence factor of Brucella. T4SS secretes 16 effector proteins, which affect the intracellular transport of Brucella-containing vacuoles and regulate the host immune response, helping Brucella survive and replicate in host cells. In our previous crotonylation proteomics data of HEK-293T cell proteins triggered by BspF, we found BspF crotonylated on TRIM38, which is an important modulator in the pathways of inflammation, and the crotonylation site is K142. Therefore, it is speculated that BspF may be involved in the regulation of host inflammatory response during Brucella infection. In this study, we found that BspF-mediated TRIM38K142 crotonylation promotes the ubiquitination of tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6), leading to the degradation of TRAF6 and thereby inhibiting the transduction of Nuclear factor-kappaB (NF-κB), p38 Mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinases (JNK) MAPK signaling pathways and the secretion of pro-inflammatory factors IL-6 and IL-8, which finally helps Brucella promote intracellular survival. This study provides a new theoretical basis for the intracellular survival of host innate immunity through the T4SS, provides new insights into the pathogenic mechanism and treatment of Brucella, and provides an important reference for the study of non-histone crotonylation function. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

19 pages, 1819 KiB  
Review
Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances
by Mariana K. Najjar, Munazza S. Khan, Chuling Zhuang, Ankush Chandra and Hui-Wen Lo
Cells 2024, 13(20), 1690; https://doi.org/10.3390/cells13201690 - 12 Oct 2024
Cited by 2 | Viewed by 3062
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a [...] Read more.
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Cancer Metastasis—2nd Edition)
Show Figures

Figure 1

14 pages, 4009 KiB  
Article
Comparative Study on the Mechanism of Macrophage Activation Induced by Polysaccharides from Fresh and Dried Longan
by Shengwei Wang, Xiaoyan Chen, Qianxin Li, Yinghui Zhang, Yu Rong, Yanxian Feng, Hui Liu, Jucai Xu, Ruili Yang and Wu Li
Nutrients 2024, 16(11), 1654; https://doi.org/10.3390/nu16111654 - 28 May 2024
Cited by 2 | Viewed by 1720
Abstract
Longan (Dimcarpus longan Lour.) is a kind of traditional fruit used as a medicine and a food. Fresh longan is primarily consumed as a fruit, whereas dried longan is commonly employed for medicinal purposes. The differences in the immunomodulatory activities and mechanisms [...] Read more.
Longan (Dimcarpus longan Lour.) is a kind of traditional fruit used as a medicine and a food. Fresh longan is primarily consumed as a fruit, whereas dried longan is commonly employed for medicinal purposes. The differences in the immunomodulatory activities and mechanisms of polysaccharides between dried and fresh longan remain unclear. The present study comparatively analyzed the mechanisms of macrophage activation induced by polysaccharides from dried (LPG) and fresh longan (LPX). The results revealed that LPG and LPX differentially promoted macrophage phagocytosis and the secretion of NO, TNF-α, and IL-6. RNA-seq analysis revealed that LPG and LPX differentially affected gene expression in macrophages. The LPG treatment identified Tnf and chemokine-related genes as core genes, while myd88 and interferon-related genes were the core genes affected by LPX. A comprehensive analysis of the differentially expressed genes showed that LPG initiated macrophage activation primarily through the TLR2/4-mediated TRAM/TRAF6 and CLR-mediated Src/Raf1 NF-κB signaling pathways. LPX initiated macrophage activation predominantly via the CLR-mediated Bcl10/MALT1 and NLR-mediated Rip2/TAK1 MAPK and NF-κB signaling pathways. Interestingly, the non-classical NF-κB signaling pathway was activated by polysaccharides in both dried and fresh longan to elicit a slow, mild immune response. LPG tends to promote immune cell migration to engage in the immune response, while LPX facilitates antigen presentation to promote T cell activation. These findings contribute insights into the mechanisms underlying the differences in bioactivity between dried and fresh longan and their potential applications in immune-enhancing strategies and functional-food development. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

15 pages, 3671 KiB  
Article
Morroniside Inhibits Inflammatory Bone Loss through the TRAF6-Mediated NF-κB/MAPK Signalling Pathway
by Jirimutu Xiao, Qiuge Han, Ziceng Yu, Mengmin Liu, Jie Sun, Mao Wu, Heng Yin, Jingyue Fu, Yang Guo, Lining Wang and Yong Ma
Pharmaceuticals 2023, 16(10), 1438; https://doi.org/10.3390/ph16101438 - 10 Oct 2023
Cited by 14 | Viewed by 1943
Abstract
Osteoporosis is a chronic inflammatory disease that severely affects quality of life. Cornus officinalis is a Chinese herbal medicine with various bioactive ingredients, among which morroniside is its signature ingredient. Although anti-bone resorption drugs are the main treatment for bone loss, promoting bone [...] Read more.
Osteoporosis is a chronic inflammatory disease that severely affects quality of life. Cornus officinalis is a Chinese herbal medicine with various bioactive ingredients, among which morroniside is its signature ingredient. Although anti-bone resorption drugs are the main treatment for bone loss, promoting bone anabolism is more suitable for increasing bone mass. Therefore, identifying changes in bone formation induced by morroniside may be conducive to developing effective intervention methods. In this study, morroniside was found to promote the osteogenic differentiation of bone marrow stem cells (BMSCs) and inhibit inflammation-induced bone loss in an in vivo mouse model of inflammatory bone loss. Morroniside enhanced bone density and bone microstructure, and inhibited the expression of IL6, IL1β, and ALP in serum (p < 0.05). Furthermore, in in vitro experiments, BMSCs exposed to 0–256 μM morroniside did not show cytotoxicity. Morroniside inhibited the expression of IL6 and IL1β and promoted the expression of the osteogenic transcription factors Runx2 and OCN. Furthermore, morroniside promoted osteocalcin and Runx2 expression and inhibited TRAF6-mediated NF-κB and MAPK signaling, as well as osteoblast growth and NF-κB nuclear transposition. Thus, morroniside promoted osteogenic differentiation of BMSCs, slowed the occurrence of the inflammatory response, and inhibited bone loss in mice with inflammatory bone loss. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

21 pages, 4235 KiB  
Article
Molecular Characterization of Nine TRAF Genes in Yellow Catfish (Pelteobagrus fulvidraco) and Their Expression Profiling in Response to Edwardsiella ictaluri Infection
by Shen-Li You, Xin-Xin Jiang, Gui-Rong Zhang, Wei Ji, Xu-Fa Ma, Xu Zhou and Kai-Jian Wei
Int. J. Mol. Sci. 2023, 24(9), 8363; https://doi.org/10.3390/ijms24098363 - 6 May 2023
Cited by 8 | Viewed by 2737
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is an economic fish with a large breeding scale, and diseases have led to huge economic losses. Tumor necrosis factor receptor-associated factors (TRAFs) are a class of intracellular signal transduction proteins that play an important role [...] Read more.
The yellow catfish (Pelteobagrus fulvidraco) is an economic fish with a large breeding scale, and diseases have led to huge economic losses. Tumor necrosis factor receptor-associated factors (TRAFs) are a class of intracellular signal transduction proteins that play an important role in innate and adaptive immune responses by mediating NF-κB, JNK and MAPK signaling pathways. However, there are few studies on the TRAF gene family in yellow catfish. In this study, the open reading frame (ORF) sequences of TRAF1, TRAF2a, TRAF2b, TRAF3, TRAF4a, TRAF4b, TRAF5, TRAF6 and TRAF7 genes were cloned and identified in yellow catfish. The ORF sequences of the nine TRAF genes of yellow catfish (Pf_TRAF1-7) were 1413–2025 bp in length and encoded 470–674 amino acids. The predicted protein structures of Pf_TRAFs have typically conserved domains compared to mammals. The phylogenetic relationships showed that TRAF genes are conserved during evolution. Gene structure, motifs and syntenic analyses of TRAF genes showed that the exon–intron structure and conserved motifs of TRAF genes are diverse among seven vertebrate species, and the TRAF gene family is relatively conserved evolutionarily. Among them, TRAF1 is more closely related to TRAF2a and TRAF2b, and they may have evolved from a common ancestor. TRAF7 is quite different and distantly related to other TRAFs. Real-time quantitative PCR (qRT-PCR) results showed that all nine Pf_TRAF genes were constitutively expressed in 12 tissues of healthy yellow catfish, with higher mRNA expression levels in the gonad, spleen, brain and gill. After infection with Edwardsiella ictaluri, the expression levels of nine Pf_TRAF mRNAs were significantly changed in the head kidney, spleen, gill and brain tissues of yellow catfish, of which four genes were down-regulated and one gene was up-regulated in the head kidney; four genes were up-regulated and four genes were down-regulated in the spleen; two genes were down-regulated, one gene was up-regulated, and one gene was up-regulated and then down-regulated in the gill; one gene was up-regulated, one gene was down-regulated, and four genes were down-regulated and then up-regulated in the brain. These results indicate that Pf_TRAF genes might be involved in the immune response against bacterial infection. Subcellular localization results showed that all nine Pf_TRAFs were found localized in the cytoplasm, and Pf_TRAF2a, Pf_TRAF3 and Pf_TRAF4a could also be localized in the nucleus, uncovering that the subcellular localization of TRAF protein may be closely related to its structure and function in cellular mechanism. The results of this study suggest that the Pf_TRAF gene family plays important roles in the immune response against pathogen invasion and will provide basic information to further understand the roles of TRAF gene against bacterial infection in yellow catfish. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 7011 KiB  
Article
Modified Montmorillonite Improved Growth Performance of Broilers by Modulating Intestinal Microbiota and Enhancing Intestinal Barriers, Anti-Inflammatory Response, and Antioxidative Capacity
by Qi Wang, Xiaoli Zhan, Baikui Wang, Fei Wang, Yuanhao Zhou, Shujie Xu, Xiang Li, Li Tang, Qian Jin, Weifen Li, Li Gong and Aikun Fu
Antioxidants 2022, 11(9), 1799; https://doi.org/10.3390/antiox11091799 - 13 Sep 2022
Cited by 18 | Viewed by 3838
Abstract
This study aims to explore the effects of modified montmorillonite (MMT, copper loading) on the growth performance, gut microbiota, intestinal barrier, antioxidative capacity and immune function of broilers. Yellow-feathered broilers were randomly divided into control (CTR), modified montmorillonite (MMT), and antibiotic (ANTI) groups. [...] Read more.
This study aims to explore the effects of modified montmorillonite (MMT, copper loading) on the growth performance, gut microbiota, intestinal barrier, antioxidative capacity and immune function of broilers. Yellow-feathered broilers were randomly divided into control (CTR), modified montmorillonite (MMT), and antibiotic (ANTI) groups. Results revealed that MMT supplementation increased the BW and ADG and decreased the F/R during the 63-day experiment period. 16S rRNA sequencing showed that MMT modulated the cecal microbiota composition of broilers by increasing the relative abundance of two phyla (Firmicutes and Bacteroidetes) and two genera (Bacteroides and Faecalibacterium) and decreasing the abundance of genus Olsenella. MMT also improved the intestinal epithelial barrier indicated by the up-regulated mRNA expression of claudin-1, occludin, and ZO-1 and the increased length of microvilli in jejunum and the decreased levels of DAO and D-LA in serum. In addition, MMT enhanced the immune function indicated by the increased levels of immunoglobulins, the decreased levels of MPO and NO, the down-regulated mRNA expression of IL-1β, IL-6, and TNF-α, and the up-regulated mRNA expression of IL-4 and IL-10. Moreover, MMT down-regulated the expression of jejunal TLRs/MAPK/NF-κB signaling pathway-related genes (TLR2, TLR4, Myd88, TRAF6, NF-κB, and iNOS) and related proteins (TRAF6, p38, ERK, NF-κB, and iNOS). In addition, MMT increased the antioxidant enzyme activities and the expression of Nrf2/HO-1 signaling pathway-related genes and thereby decreased the apoptosis-related genes expression. Spearman’s correlation analysis revealed that Bacteroides, Faecalibacterium, and Olsenella were related to the inflammatory index (MPO and NO), oxidative stress (T-AOC, T-SOD, and CAT) and intestinal integrity (D-LA and DAO). Taken together, MMT supplementation improved the growth performance of broilers by modulating intestinal microbiota, enhancing the intestinal barrier function, and improving inflammatory response, which might be mediated by inhibiting the TLRs/MAPK/NF-κB signaling pathway, and antioxidative capacity mediated by the Nrf2/HO-1 signaling pathway. Full article
(This article belongs to the Special Issue Antioxidants in Husbandry Animal Production)
Show Figures

Figure 1

16 pages, 3270 KiB  
Article
A20 Inhibits LPS-Induced Inflammation by Regulating TRAF6 Polyubiquitination in Rainbow Trout
by Ju Hye Jang, Hyun Kim, In Young Jung and Ju Hyun Cho
Int. J. Mol. Sci. 2021, 22(18), 9801; https://doi.org/10.3390/ijms22189801 - 10 Sep 2021
Cited by 13 | Viewed by 2816
Abstract
The ubiquitin-editing enzyme A20 is known to inhibit the NF-κB transcription factor in the Toll-like receptor (TLR) pathways, thereby negatively regulating inflammation. However, its role in the TLR signaling pathway in fish is still largely unknown. Here, we identified a gene encoding A20 [...] Read more.
The ubiquitin-editing enzyme A20 is known to inhibit the NF-κB transcription factor in the Toll-like receptor (TLR) pathways, thereby negatively regulating inflammation. However, its role in the TLR signaling pathway in fish is still largely unknown. Here, we identified a gene encoding A20 (OmA20) in rainbow trout, Oncorhynchus mykiss, and investigated its role in TLR response regulation. The deduced amino acid sequence of OmA20 contained a conserved N-terminal ovarian tumor (OTU) domain and seven C-terminal zinc-finger (ZnF) domains. Lipopolysaccharide (LPS) stimulation increased OmA20 expression in RTH-149 cells. In LPS-stimulated RTH-149 cells, gain- and loss-of-function experiments revealed that OmA20 inhibited MAPK and NF-κB activation, as well as the expression of pro-inflammatory cytokines. OmA20 interacted with TRAF6, a key molecule involved in the activation of TLR-mediated NF-κB signaling pathways. LPS treatment increased the K63-linked polyubiquitination of TRAF6 in RTH-149 cells, which was suppressed when OmA20 was forced expression. Furthermore, mutations in the OTU domain significantly decreased deubiquitination of the K63-linked ubiquitin chain on TRAF6, indicating that deubiquitinase activity is dependent on the OTU domain. These findings suggest that OmA20, like those of mammals, reduces LPS-induced inflammation in rainbow trout, most likely by regulating K63-linked ubiquitination of TRAF6. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 4435 KiB  
Article
Hp-s1 Ganglioside Suppresses Proinflammatory Responses by Inhibiting MyD88-Dependent NF-κB and JNK/p38 MAPK Pathways in Lipopolysaccharide-Stimulated Microglial Cells
by Jui-Hu Shih, Yow-Fu Tsai, I-Hsun Li, Ming-Hua Chen and Yuahn-Sieh Huang
Mar. Drugs 2020, 18(10), 496; https://doi.org/10.3390/md18100496 - 29 Sep 2020
Cited by 16 | Viewed by 4363
Abstract
Hp-s1 ganglioside is isolated from the sperm of sea urchin (Hemicentrotus pulcherrimus). In addition to neuritogenic activity, the biological function of Hp-s1 in neuroinflammation is unknown. In this study, we investigated the anti-neuroinflammatory effect of Hp-s1 on lipopolysaccharide (LPS)-stimulated microglial cells. MG6 microglial [...] Read more.
Hp-s1 ganglioside is isolated from the sperm of sea urchin (Hemicentrotus pulcherrimus). In addition to neuritogenic activity, the biological function of Hp-s1 in neuroinflammation is unknown. In this study, we investigated the anti-neuroinflammatory effect of Hp-s1 on lipopolysaccharide (LPS)-stimulated microglial cells. MG6 microglial cells were stimulated with LPS in the presence or absence of different Hp-s1 concentrations. The anti-inflammatory effect and underlying mechanism of Hp-s1 in LPS-activated microglia cells were assessed through a Cell Counting kit-8 assay, Western blot analysis, and immunofluorescence. We found that Hp-s1 suppressed not only the expression of inducible nitric oxide synthase and cyclooxygenase-2 but also the expression of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Hp-s1 inhibited the LPS-induced NF-κB signaling pathway by attenuating the phosphorylation and translocation of NF-κB p65 and by disrupting the degradation and phosphorylation of inhibitor κB-α (IκBα). Moreover, Hp-s1 inhibited the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Hp-s1 also reduced the expression of myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factors 6 (TRAF6), which are prerequisites for NF-κB and MAPKs activation. These findings indicated that Hp-s1 alleviated LPS-induced proinflammatory responses in microglial cells by downregulating MyD88-mediated NF-κB and JNK/p38 MAPK signaling pathways, suggesting further evaluation as a new anti-neuroinflammatory drug. Full article
Show Figures

Figure 1

18 pages, 5351 KiB  
Article
METTL3 Modulates Osteoclast Differentiation and Function by Controlling RNA Stability and Nuclear Export
by Di Li, Luhui Cai, Runsha Meng, Zhihui Feng and Qiong Xu
Int. J. Mol. Sci. 2020, 21(5), 1660; https://doi.org/10.3390/ijms21051660 - 28 Feb 2020
Cited by 81 | Viewed by 5746
Abstract
Osteoclast differentiation and function are crucial for maintaining bone homeostasis and preserving skeletal integrity. N6-methyladenosine (m6A) is an abundant mRNA modification that has recently been shown to be important in regulating cell lineage differentiation. Nevertheless, the effect of m6A [...] Read more.
Osteoclast differentiation and function are crucial for maintaining bone homeostasis and preserving skeletal integrity. N6-methyladenosine (m6A) is an abundant mRNA modification that has recently been shown to be important in regulating cell lineage differentiation. Nevertheless, the effect of m6A on osteoclast differentiation remains unknown. In the present study, we observed that the m6A level and methyltransferase METTL3 expression increased during osteoclast differentiation. Mettl3 knockdown resulted in an increased size but a decreased bone-resorbing ability of osteoclasts. The expression of osteoclast-specific genes (Nfatc1, c-Fos, Ctsk, Acp5 and Dcstamp) was inhibited by Mettl3 depletion, while the expression of the cellular fusion-specific gene Atp6v0d2 was upregulated. Mechanistically, Mettl3 knockdown elevated the mRNA stability of Atp6v0d2 and the same result was obtained when the m6A-binding protein YTHDF2 was silenced. Moreover, the phosphorylation levels of key molecules in the MAPK, NF-κB and PI3K-AKT signaling pathways were reduced upon Mettl3 deficiency. Depletion of Mettl3 maintained the retention of Traf6 mRNA in the nucleus and reduced the protein levels of TRAF6. Taken together, our data suggest that METTL3 regulates osteoclast differentiation and function through different mechanisms involving Atp6v0d2 mRNA degradation mediated by YTHDF2 and Traf6 mRNA nuclear export. These findings elucidate the molecular basis of RNA epigenetic regulation in osteoclast development. Full article
(This article belongs to the Special Issue Epigenetic, microRNA and Long Non-Coding RNA Roles in Osteoporosis)
Show Figures

Figure 1

Back to TopTop