Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = TCSPC technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2650 KB  
Article
Advanced Spectroscopic Studies of the AIE-Enhanced ESIPT Effect in a Selected 1,3,4-Thiadiazole Derivative in Liposomal Systems with DPPC
by Alicja Skrzypek, Iwona Budziak-Wieczorek, Lidia Ślusarczyk, Andrzej Górecki, Daniel Kamiński, Anita Kwaśniewska, Sylwia Okoń, Igor Różyło and Arkadiusz Matwijczuk
Int. J. Mol. Sci. 2025, 26(21), 10643; https://doi.org/10.3390/ijms262110643 - 31 Oct 2025
Viewed by 507
Abstract
Liposomal systems are advanced carriers of active substances which, thanks to their ability to encapsulate these substances, significantly improve their pharmacokinetics, bioavailability, and selectivity. This article presents the results of spectroscopic studies for a selected compound from the 1,3,4-thiadiazole group, namely 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD, [...] Read more.
Liposomal systems are advanced carriers of active substances which, thanks to their ability to encapsulate these substances, significantly improve their pharmacokinetics, bioavailability, and selectivity. This article presents the results of spectroscopic studies for a selected compound from the 1,3,4-thiadiazole group, namely 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD, see below in the text), in selected liposomal systems formed from the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Detailed spectroscopic analyses were carried out using electronic absorption and fluorescence spectroscopy; resonance light scattering (RLS) spectra measurements; dynamic light scattering (DLS); as well as time-resolved methods—fluorescence lifetime measurements using the TCSPC technique. Subsequently, based on the interpretation of spectra obtained by FTIR infrared spectroscopy, the preliminary molecular organization of the above-mentioned compounds within lipid multilayers was determined. It was found that NTBD preferentially occupies the region of polar lipid headgroups in the lipid multilayer, although it also noticeably interacts with the hydrocarbon chains of the lipids. Furthermore, X-ray diffraction (XRD) techniques were used to study the effect of NTBD on the molecular organization of DPPC lipid multilayers. Monomeric structures and aggregated forms of the above-mentioned 1,3,4-thiadiazole analogue were characterized using X-ray crystallography. Interesting dual fluorescence effects observed in steady-state fluorescence measurements were linked to the excited-state intramolecular proton transfer (ESIPT) effect (based on our earlier studies), which, in the obtained biophysical systems—liposomal systems with strong hydrophobicity—is greatly enhanced by aggregation-induced emission (AIE) effects. In summary, the research presented in this study, concerning the novel 1,3,4-thiadiazole derivative NTBD, is highly relevant to drug delivery systems, such as various model liposomal systems, as it demonstrates that depending on the concentration of the selected fluorophore, different forms may be present, allowing for appropriate modulation of its biological activity. Full article
(This article belongs to the Special Issue AIEgens in Action: Design, Mechanisms, and Emerging Applications)
Show Figures

Graphical abstract

18 pages, 26847 KB  
Article
Transfer Bandwidth Optimization for Multichannel Time-Correlated Single-Photon-Counting Systems Using a Router-Based Architecture: New Advancements and Results
by Andrea Giudici, Giulia Acconcia, Francesco Malanga and Ivan Rech
Photonics 2023, 10(11), 1227; https://doi.org/10.3390/photonics10111227 - 2 Nov 2023
Cited by 1 | Viewed by 2151
Abstract
Time-correlated single-photon counting (TCSPC) is a powerful technique for time-resolved measurement of fast and weak light signals used in a variety of scientific fields, including biology, medicine, and quantum cryptography. Unfortunately, given its repetitive nature, TCSPC is recognized as a relatively slow technique. [...] Read more.
Time-correlated single-photon counting (TCSPC) is a powerful technique for time-resolved measurement of fast and weak light signals used in a variety of scientific fields, including biology, medicine, and quantum cryptography. Unfortunately, given its repetitive nature, TCSPC is recognized as a relatively slow technique. In the last ten years, attempts have been made to speed it up by developing multichannel integrated architectures. Yet, for the solutions proposed thus far, the measurement speed has not increased proportionally to the number of channels, reducing the benefits of a multichannel approach. Recent theoretical studies and prototypes have shown that it is possible to implement a new multichannel architecture, so-called router-based architecture, capable of optimizing the efficiency of data transfer from the integrated chip to the data processor, increasing the overall measurement speed. However, the first implementations failed to achieve the theoretical results due to implementation flaws. In this paper, we present a new logic for the router-based architecture that can operate at the same laser frequency and solve the issues of the previous implementation. Alongside the new logic, we present a new integrated low-jitter delay line combined with a new method for timing-signal distribution that allows the proper management of the pixel timing information. The new implementation is a step closer to realizing a router-based architecture that achieves the expected theoretical results. Simulations and bench tests support the results here reported. Full article
(This article belongs to the Special Issue Applications of Single-Photon Detector)
Show Figures

Figure 1

20 pages, 2138 KB  
Article
Two-Photon Excited Fluorescence of NADH-Alcohol Dehydrogenase Complex in a Mixture with Bacterial Enzymes
by Ioanna A. Gorbunova, Maxim E. Sasin, Dmitry V. Yachkov, Denis A. Volkov, Alexei D. Vedyaykin, Andrey A. Nikiforov and Oleg S. Vasyutinskii
Biomolecules 2023, 13(2), 256; https://doi.org/10.3390/biom13020256 - 30 Jan 2023
Cited by 7 | Viewed by 3464
Abstract
Thorough study of composition and fluorescence properties of a commercial reagent of active equine NAD-dependent alcohol dehydrogenase expressed and purified from E. coli has been carried out. Several experimental methods: spectral- and time-resolved two-photon excited fluorescence, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, fast protein [...] Read more.
Thorough study of composition and fluorescence properties of a commercial reagent of active equine NAD-dependent alcohol dehydrogenase expressed and purified from E. coli has been carried out. Several experimental methods: spectral- and time-resolved two-photon excited fluorescence, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, fast protein liquid chromatography, and mass spectrometry were used for analysis. The reagent under study was found to contain also a number of natural fluorophores: free NAD(P)H, NADH-alcohol dehydrogenase, NADPH-isocitrate dehydrogenase, and pyridoxal 5-phosphate—serine hydroxymethyltransferase complexes. The results obtained demonstrated the potential and limitations of popular optical methods as FLIM for separation of fluorescence signals from free and protein-bound forms of NADH, NADPH, and FAD that are essential coenzymes in redox reactions in all living cells. In particular, NADH-alcohol dehydrogenase and NADPH-isocitrate dehydrogenase complexes could not be optically separated in our experimental conditions although fast protein liquid chromatography and mass spectrometry analysis undoubtedly indicated the presence of both enzymes in the molecular sample used. Also, the results of fluorescence, fast protein liquid chromatography, and mass spectrometry analysis revealed a significant contribution of the enzyme-bound coenzyme pyridoxal 5-phosphate to the fluorescence signal that could be separated from enzyme-bound NADH by using bandpass filters, but could effectively mask contribution from enzyme-bound FAD because the fluorescence spectra of the species practically overlapped. It was shown that enzyme-bound pyridoxal 5-phosphate fluorescence can be separated from enzyme-bound NAD(P)H and FAD through analysis of short fluorescence decay times of about tens of picoseconds. However, this analysis was found to be effective only at relatively high number of peak photon counts in recorded fluorescence signals. The results obtained in this study can be used for interpretation of fluorescence signals from a mixture of enzyme-bound fluorophores and should be taken into consideration when determining the intracellular NADH/FAD ratio using FLIM. Full article
(This article belongs to the Collection Feature Papers in Enzymology)
Show Figures

Graphical abstract

15 pages, 3059 KB  
Article
Effect of Lidar Receiver Field of View on UAV Detection
by Zijian Chen, Yu Miao, Dan Tang, Hao Yang and Wenwu Pan
Photonics 2022, 9(12), 972; https://doi.org/10.3390/photonics9120972 - 11 Dec 2022
Cited by 4 | Viewed by 3806
Abstract
Researchers have shown that single-photon light detection and ranging (lidar) is highly sensitive and has a high temporal resolution. Due to the excellent beam directivity of lidar, most applications focus on ranging and imaging. Here, we present a lidar detection system for night [...] Read more.
Researchers have shown that single-photon light detection and ranging (lidar) is highly sensitive and has a high temporal resolution. Due to the excellent beam directivity of lidar, most applications focus on ranging and imaging. Here, we present a lidar detection system for night environments. Different from MEMS, we choose a large divergence rather than scanning to detect unmanned aerial vehicles (UAVs). Collection and detection are achieved through the use of high-efficiency optical devices. With time-correlated single photon counting (TCSPC), we performed subsequent drone search work at centimeter resolution. We believe that we have developed a new technique for detecting UAVs. We show how the field of view influences the detection process. For some key areas of air defense, it is extremely necessary to find UAVs quickly and in a timely manner. In short, the results represent an important step toward practical, low-power drone detection using lidar. Full article
Show Figures

Figure 1

14 pages, 7358 KB  
Article
Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties
by Jingling Li, Haixin Zheng, Ziming Zheng, Haibo Rong, Zhidong Zeng and Hui Zeng
Nanomaterials 2022, 12(17), 2969; https://doi.org/10.3390/nano12172969 - 27 Aug 2022
Cited by 22 | Viewed by 6305
Abstract
Mastery over the structure of nanocrystals is a powerful tool for the control of their fluorescence properties and to broaden the range of their applications. In this work, the crystalline structure of CdSe can be tuned by the precursor concentration and the dosage [...] Read more.
Mastery over the structure of nanocrystals is a powerful tool for the control of their fluorescence properties and to broaden the range of their applications. In this work, the crystalline structure of CdSe can be tuned by the precursor concentration and the dosage of tributyl phosphine, which is verified by XRD, photoluminescence and UV-vis spectra, TEM observations, and time-correlated single photon counting (TCSPC) technology. Using a TBP-assisted thermal-cycling technique coupled with the single precursor method, core–shell QDs with different shell thicknesses were then prepared. The addition of TBP improves the isotropic growth of the shell, resulting in a high QY value, up to 91.4%, and a single-channel decay characteristic of CdSe/ZnS quantum dots. This work not only provides a facile synthesis route to precisely control the core–shell structures and fluorescence properties of CdSe nanocrystals but also builds a link between ligand chemistry and crystal growth theory. Full article
Show Figures

Graphical abstract

16 pages, 4275 KB  
Article
Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging
by Aurora Maccarone, Giulia Acconcia, Ulrich Steinlehner, Ivan Labanca, Darryl Newborough, Ivan Rech and Gerald S. Buller
Sensors 2021, 21(14), 4850; https://doi.org/10.3390/s21144850 - 16 Jul 2021
Cited by 17 | Viewed by 5533
Abstract
We present an optical depth imaging system suitable for highly scattering underwater environments. The system used the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach to obtain depth profiles. The single-photon detection was provided by a linear array of single-photon avalanche diode [...] Read more.
We present an optical depth imaging system suitable for highly scattering underwater environments. The system used the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach to obtain depth profiles. The single-photon detection was provided by a linear array of single-photon avalanche diode (SPAD) detectors fabricated in a customized silicon fabrication technology for optimized efficiency, dark count rate, and jitter performance. The bi-static transceiver comprised a pulsed laser diode source with central wavelength 670 nm, a linear array of 16 × 1 Si-SPAD detectors, with a dedicated TCSPC acquisition module. Cylindrical lenses were used to collect the light scattered by the target and image it onto the sensor. These laboratory-based experiments demonstrated single-photon depth imaging at a range of 1.65 m in highly scattering conditions, equivalent up to 8.3 attenuation lengths between the system and the target, using average optical powers of up to 15 mW. The depth and spatial resolution of this sensor were investigated in different scattering conditions. Full article
(This article belongs to the Special Issue Single Photon Counting Image Sensor)
Show Figures

Figure 1

15 pages, 2087 KB  
Review
Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics
by Liping Wei, Wenrong Yan and Derek Ho
Sensors 2017, 17(12), 2800; https://doi.org/10.3390/s17122800 - 4 Dec 2017
Cited by 31 | Viewed by 10005
Abstract
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement [...] Read more.
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. Full article
(This article belongs to the Special Issue Novel Sensors for Bioimaging)
Show Figures

Figure 1

Back to TopTop