Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,866)

Search Parameters:
Keywords = T cellular immunity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1808 KB  
Review
Targeting the Tumor Microenvironment in Triple-Negative Breast Cancer: Emerging Roles of Monoclonal Antibodies and Immune Modulation
by Stephanie Figueroa, Niradiz Reyes, Raj K. Tiwari and Jan Geliebter
Cancers 2026, 18(3), 412; https://doi.org/10.3390/cancers18030412 - 28 Jan 2026
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and clinically challenging subtype of breast cancer characterized by the absence of estrogen receptor, progesterone receptor, and HER2 expression. This molecular phenotype narrows the availability of targeted therapies and contributes to high rates of early relapse, [...] Read more.
Triple-negative breast cancer (TNBC) is an aggressive and clinically challenging subtype of breast cancer characterized by the absence of estrogen receptor, progesterone receptor, and HER2 expression. This molecular phenotype narrows the availability of targeted therapies and contributes to high rates of early relapse, therapeutic resistance, and poor clinical outcomes. Mounting evidence pinpoints the tumor microenvironment (TME) as a central driver of TNBC progression, immune evasion, and resistance to treatment. The TME encompasses a complex and dynamic network of immune and stromal cells, extracellular matrix components, and soluble mediators that collectively shape tumor behavior and influence therapeutic response. Notably, TNBC often displays an immunologically active microenvironment, marked by high levels of tumor-infiltrating lymphocytes and immune checkpoint expression, opening a window for immune-based therapeutic strategies. This narrative review summarizes current knowledge on the cellular, molecular, and structural features of the TNBC tumor microenvironment, with particular focus on immunosuppressive mechanisms mediated by tumor-associated macrophages, myeloid-derived suppressor cells, cancer-associated fibroblasts, and dysfunctional T cells. We describe the clinical development and therapeutic impact of monoclonal antibodies, including immune checkpoint inhibitors and antibody–drug conjugates. Additionally, we discuss strategies aimed at modulating the TME to enhance monoclonal antibody efficacy, including immune cell reprogramming, extracellular matrix remodeling, cytokine/chemokine blockade, and combination treatment strategies. Finally, we highlight the role of biomarker-driven patient stratification and personalized therapeutic strategies, addressing current challenges and future directions in TME-targeted drug development. Together, these insights underscore the potential of integrating immune modulation and monoclonal antibody-based therapies to improve outcomes for TNBC patients. Full article
Show Figures

Graphical abstract

17 pages, 1234 KB  
Article
Long-Term Protective Immune Responses Induced by rBCG-RBD/rRBD Heterologous Prime/Boost Immunization Strategy: Fusion of RBD-Wuhan with LTB Adjuvant Induces Cross-Reactivity with SARS-CoV-2 Variant Omicron
by Giana Carla Gaboardi, Monalisa Martins Trentini, Alex Issamu Kanno, Luana Moraes, Arthur Daniel Januzzi, Lennon Ramos Pereira, Greicy Brisa Malaquias Dias, Luciano Fernandes Huergo, Sergio C. Oliveira, André Bafica and Luciana Cezar de Cerqueira Leite
Vaccines 2026, 14(2), 120; https://doi.org/10.3390/vaccines14020120 - 27 Jan 2026
Abstract
Background/Objectives: SARS-CoV-2, the causative agent of COVID-19, has been responsible for more than seven million deaths worldwide since its emergence. The Bacillus Calmette–Guérin (BCG) vaccine, used for over 100 years to prevent tuberculosis, induces a Th1-prominent immune response that is important for [...] Read more.
Background/Objectives: SARS-CoV-2, the causative agent of COVID-19, has been responsible for more than seven million deaths worldwide since its emergence. The Bacillus Calmette–Guérin (BCG) vaccine, used for over 100 years to prevent tuberculosis, induces a Th1-prominent immune response that is important for protection against Mycobacterium tuberculosis, other mycobacteria, and intracellular pathogens. BCG has also been shown to induce innate immune memory and heterologous protection against non-related infections. Additionally, BCG has been used as a vector to express heterologous proteins, showing protective effects against various diseases, particularly respiratory viral infections, including SARS-CoV-2. In this report, we constructed two recombinant BCG strains as potential vaccine candidates based on the receptor-binding domain (RBD) of the Spike antigen: one expressing only the RBD protein (rBCG-RBD) and another expressing the RBD protein in fusion with the LTB (Escherichia coli Labile Toxin subunit B) adjuvant (rBCG-LTB-RBD). Methods: We evaluated the induction of SARS-CoV-2-specific humoral and cellular immune responses using these vaccine candidates in a prime–boost strategy with a booster dose using the rRBD protein (produced in cell culture) and the Alum adjuvant. Antisera were evaluated for neutralization of the Wuhan and Omicron SARS-CoV-2 pseudotyped virus. Results: Either immunization scheme (rBCG-RBD/rRBD or rBCG-LTB-RBD/rRBD) induced high IgG antibody titers, with antibody neutralization against a Wuhan SARS-CoV-2 pseudotyped virus after 10 weeks. The antibody levels induced by rBCG-RBD/rRBD were maintained for up to 9 months. Interestingly, only the sera from mice receiving the prime–boost with rBCG-LTB-RBD/rRBD showed cross-reactive neutralization against the Omicron SARS-CoV-2 pseudotyped virus. Immunization with rBCG-RBD or rBCG-LTB-RBD and a rRBD booster dose promoted the induction of specific CD4+ and CD8+ T cells producing Th1/Th2 cytokines (IL-4, TNF-α and IFN-γ). Conclusions: Our study highlights the potential of the prime–boost immunization strategy using rBCG-RBD/rRBD to induce long-term immunity and rBCG-LTB-RBD/rRBD to induce cross-protection against different variants, both of which could serve as promising vaccine candidates. Full article
Show Figures

Figure 1

31 pages, 1726 KB  
Review
Comprehensive Roles of ZIP and ZnT Zinc Transporters in Metabolic Inflammation
by Susmita Barman, Seetur R. Pradeep and Krishnapura Srinivasan
Targets 2026, 4(1), 5; https://doi.org/10.3390/targets4010005 - 27 Jan 2026
Abstract
Zinc homeostasis is fundamental to metabolic health, orchestrated by the coordinated actions of two major zinc transporter families: ZIP (Zrt- and Irt-like proteins) and ZnT (zinc transporters). ZIP transporters facilitate zinc influx into the cytosol from the extracellular space or from the lumen [...] Read more.
Zinc homeostasis is fundamental to metabolic health, orchestrated by the coordinated actions of two major zinc transporter families: ZIP (Zrt- and Irt-like proteins) and ZnT (zinc transporters). ZIP transporters facilitate zinc influx into the cytosol from the extracellular space or from the lumen of intracellular organelles, whereas ZnT transporters control zinc efflux from the cytosol to the extracellular space or facilitate its sequestration into intracellular vesicles and organelles, concurrently harboring the meticulous intracellular zinc homeostasis. This equilibrium is essential for all critical functions like cellular response, metabolic control, and immune pathway alteration. Disruption of this homeostasis is a driver of different pathological alterations like metabolic inflammation, a chronic low-grade inflammatory state underlying obesity; type 2 diabetes; and nonalcoholic fatty liver disease. Recent studies revealed that ZIP and ZnT transporters dynamically regulate metabolic and inflammatory cues, with their tissue-specific expression varying by tissue and acclimating to different physiological and pathological conditions. Recent advanced research in molecular and genetic understanding has helped to deepen our knowledge of the interplay of activity between ZIP and ZnT transporters and their crosstalk in metabolic tissues, underscoring the potential therapeutic prospect for restoring zinc balance and ameliorating metabolic inflammation. This review provides a comprehensive overview that covers the function, regulation, and interactive crosstalk of ZIP and ZnT zinc transporters in metabolic tissues and their pathological conditions. Full article
Show Figures

Graphical abstract

11 pages, 876 KB  
Article
Robust Adaptive Immunity to MPXV in Older People Who Received Childhood Vaccinia Vaccination
by Chris Davis, Jianmin Zuo, Rachel Bruton, Marie Hodges, Tom Roberts, Maria Manali, Paula Olmo, Brian Willett, Paul Moss and Helen Parry
Biology 2026, 15(3), 234; https://doi.org/10.3390/biology15030234 - 26 Jan 2026
Abstract
Monkeypox virus (MPXV) is a zoonotic Orthopoxvirus responsible for Monkeypox (Mpox), historically associated with sporadic zoonotic transmission but increasingly characterised by sustained human-to-human spread. While vaccinia-based vaccination is known to confer cross-protection against MPXV, the durability of such immunity over a human lifetime [...] Read more.
Monkeypox virus (MPXV) is a zoonotic Orthopoxvirus responsible for Monkeypox (Mpox), historically associated with sporadic zoonotic transmission but increasingly characterised by sustained human-to-human spread. While vaccinia-based vaccination is known to confer cross-protection against MPXV, the durability of such immunity over a human lifetime remains incompletely characterised. Here, we assessed humoral and cellular immune responses to MPXV in octogenarians and nonagenarians vaccinated against smallpox during childhood. Twenty-three adults aged 79–94 years (median 83), who self-reported childhood vaccinia vaccination between 1925 and 1940, were recruited. MPXV-specific antibody responses were evaluated using ELISA, targeting homologous vaccinia and MPXV proteins, and live-virus neutralisation assays. Cellular immunity was assessed by IFN-γ ELISpot following stimulation with peptide pools derived from highly conserved vaccinia antigens. Responses were also obtained from younger, recently MVA–BN-vaccinated and unvaccinated control donors. All historically vaccinated participants exhibited MPXV-reactive IgG responses, with antibody binding and neutralisation levels comparable to recently vaccinated individuals. Functional neutralising activity against MPXV was detected in all donors, with ≥50% neutralisation observed in 78% of participants. Antibody concentrations correlated strongly with neutralisation capacity. T-cell responses were detectable in all historically vaccinated donors, most prominently against the major core protein A10L, although reduced magnitudes were observed in participants over 90 years of age. No MPXV-specific humoral or cellular responses were detected in unvaccinated controls. These findings demonstrate that childhood vaccinia vaccination induces durable humoral and cellular immunity against MPXV persisting for over seven decades. Historical smallpox vaccination status may therefore remain a relevant determinant of protection against Mpox. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Figure 1

18 pages, 4493 KB  
Article
Integrated Single-Cell and Spatial Transcriptomics Coupled with Machine Learning Uncovers MORF4L1 as a Critical Epigenetic Mediator of Radiotherapy Resistance in Colorectal Cancer Liver Metastasis
by Yuanyuan Zhang, Xiaoli Wang, Haitao Liu, Yan Xiang and Le Yu
Biomedicines 2026, 14(2), 273; https://doi.org/10.3390/biomedicines14020273 - 26 Jan 2026
Viewed by 41
Abstract
Background and Objective: Colorectal cancer (CRC) liver metastasis (CRLM) represents a major clinical challenge, and acquired resistance to radiotherapy (RT) significantly limits therapeutic efficacy. A deep and comprehensive understanding of the cellular and molecular mechanisms driving RT resistance is urgently required to develop [...] Read more.
Background and Objective: Colorectal cancer (CRC) liver metastasis (CRLM) represents a major clinical challenge, and acquired resistance to radiotherapy (RT) significantly limits therapeutic efficacy. A deep and comprehensive understanding of the cellular and molecular mechanisms driving RT resistance is urgently required to develop effective combination strategies. Here, we aimed to dissect the dynamic cellular landscape of the tumor microenvironment (TME) and identify key epigenetic regulators mediating radioresistance in CRLM by integrating cutting-edge single-cell and spatial omics technologies. Methods and Results: We performed integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) on matched pre- and post-radiotherapy tumor tissues collected from three distinct CRLM patients. Employing a robust machine-learning framework on the multi-omics data, we successfully identified MORF4L1 (Mortality Factor 4 Like 1), an epigenetic reader, as a critical epigenetic mediator of acquired radioresistance. High-resolution scRNA-seq analysis of the tumor cell compartment revealed that the MORF4L1-high subpopulation exhibited significant enrichment in DNA damage repair (DDR) pathways, heightened activity of multiple pro-survival metabolic pathways, and robust signatures of immune evasion. Pseudotime trajectory analysis further confirmed that RT exposure drives tumor cells toward a highly resistant state, marked by a distinct increase in MORF4L1 expression. Furthermore, cell–cell communication inference demonstrated a pronounced, systemic upregulation of various immunosuppressive signaling axes within the TME following RT. Crucially, high-resolution ST confirmed these molecular and cellular interactions in their native context, revealing a significant spatial co-localization of MORF4L1-expressing tumor foci with multiple immunosuppressive immune cell types, including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs), thereby underscoring its role in TME-mediated resistance. Conclusions: Our comprehensive spatial and single-cell profiling establishes MORF4L1 as a pivotal epigenetic regulator underlying acquired radioresistance in CRLM. These findings provide a compelling mechanistic rationale for combining radiotherapy with the targeted inhibition of MORF4L1, presenting a promising new therapeutic avenue to overcome treatment failure and improve patient outcomes in CRLM. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Cancer Progression)
Show Figures

Figure 1

13 pages, 2822 KB  
Article
Genetically Engineered Biomimetic Nanovesicles Co-Deliveing a Checkpoint Inhibitor and Doxorubicin for Enhanced Cancer Chemo-Immunotherapy
by Yunying Xing, Xinyi Liu, Zhenkun Wang, Yingze Wang, Jing Zhang and Wenxiang Zhu
Pharmaceutics 2026, 18(2), 159; https://doi.org/10.3390/pharmaceutics18020159 - 26 Jan 2026
Viewed by 48
Abstract
Background/Objectives: Despite the clinical success of immune checkpoint blockade (ICB), its efficacy remains limited in immunologically “cold” tumors, primarily due to poor immunogenicity and an immunosuppressive tumor microenvironment (TME). Chemo-immunotherapy offers a potential strategy to enhance ICB response, yet its application is [...] Read more.
Background/Objectives: Despite the clinical success of immune checkpoint blockade (ICB), its efficacy remains limited in immunologically “cold” tumors, primarily due to poor immunogenicity and an immunosuppressive tumor microenvironment (TME). Chemo-immunotherapy offers a potential strategy to enhance ICB response, yet its application is often hindered by inadequate tumor-targeted delivery and systemic immunosuppressive side effects. Biomimetic nanotechnology represents a promising approach to overcoming these limitations by improving drug delivery and facilitating effective combination regimens. Methods: We developed a biomimetic nanosystem (NVs@DOX) through genetic engineering of cellular membranes and optimized nanoformulation techniques, enabling co-delivery of doxorubicin (DOX) and ICB agents. This design aims to maximize synergistic antitumor effects while minimizing adverse impacts. Results: In vitro studies demonstrated the potent cytotoxicity of NVs@DOX, including significant inhibition of cancer cell proliferation and complete suppression of colony formation. In a 4T1 murine breast cancer model, NVs@DOX treatment led to substantial tumor growth inhibition (approximately 72%) without notable body weight loss, underscoring a favorable safety profile alongside enhanced therapeutic efficacy. Conclusions: The NVs@DOX platform effectively integrates doxorubicin with ICB within a biomimetic nanocarrier, significantly improving chemo-immunotherapy outcomes. This strategy highlights the potential of genetically engineered cellular nanoparticles as a promising combinatorial approach for the treatment of breast cancer. Full article
Show Figures

Figure 1

19 pages, 2166 KB  
Article
Efficacy of Multivalent Dengue Vaccine Candidates Predicted In Silico
by Seokhwan Hyeon, Kwangwook Kim, Yoo Jin Na, Mihee Kim, Jaenam Jeong, Byung Chul Kim and Yookyoung Lee
Vaccines 2026, 14(2), 114; https://doi.org/10.3390/vaccines14020114 - 25 Jan 2026
Viewed by 174
Abstract
Background: Dengue virus (DENV) is becoming a global public health problem, but the immunogenicity of DENV structural proteins is not fully understood. Methods: We predicted the epitope-based immunogenicity of DENV proteins from four serotypes in silico and evaluated their efficacy in vitro (T-cell [...] Read more.
Background: Dengue virus (DENV) is becoming a global public health problem, but the immunogenicity of DENV structural proteins is not fully understood. Methods: We predicted the epitope-based immunogenicity of DENV proteins from four serotypes in silico and evaluated their efficacy in vitro (T-cell proliferation assays) and in vivo (ELISpot, qRT-PCR, and plaque reduction neutralization tests using murine splenocytes). We focused on the envelope protein, which contains envelope domain III. Immunogenic B-cell epitopes were predicted using BepiPred-2.0, and regions that induce T cell-mediated immune responses were analyzed using the immune epitope database (IEDB), which validates peptides presented on HLA class I. Results: Nine-amino-acid peptide candidates were selected based on a score of >0.1. The best peptide candidates were tested in T-cell proliferation assays to confirm the in silico data. Subsequently, BALB/c mice were vaccinated with candidate peptides showing immunity in the proliferation assay, and their splenocytes were analyzed. ELISpot and qRT-PCR data showed that some candidate peptides highly regulated cytokines, including interferon-γ, tumor necrosis factor-α, and interleukin-4. Murine sera were collected after peptide boosting 2 weeks apart. Stimulation of cellular immunity was confirmed for some candidates in plaque reduction neutralization tests. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

10 pages, 417 KB  
Article
Thyroid Hormone Replacement Dose Is Not Associated with Anti-TPO and Anti-TG Antibody Titers in Hashimoto’s Disease
by Małgorzata Szczuko, Olimpia Szmigiel, Urszula Szczuko, Leon Rudak, Karolina Wrońska, Lidia Kwiatkowska, Małgorzata Tomasik, Anhelli Syrenicz and Jakub Pobłocki
J. Clin. Med. 2026, 15(3), 970; https://doi.org/10.3390/jcm15030970 - 25 Jan 2026
Viewed by 146
Abstract
Background: Hashimoto’s thyroiditis (HT) is the result of a complex interplay between genetic, environmental, and epigenetic factors. The role of cellular and humoral immunity in the pathogenesis of the disease is well-established. Inflammatory infiltration of T and B lymphocytes is a key [...] Read more.
Background: Hashimoto’s thyroiditis (HT) is the result of a complex interplay between genetic, environmental, and epigenetic factors. The role of cellular and humoral immunity in the pathogenesis of the disease is well-established. Inflammatory infiltration of T and B lymphocytes is a key feature identified on ultrasound examination. The lack of data on the effect of L-thyroxine (LT-4) doses on the level of anti-TPO and anti-TG antibodies in Hashimoto’s thyroiditis and the relationship with anthropometric measurements resulted in the desire to fill this niche. Methods: A total of 70 Caucasian patients diagnosed with Hashimoto’s thyroiditis within the past two years were examined. The participants were divided into three groups based on their L-thyroxine dosage (≤50, 50–100, >100 μg). Results: The results revealed no correlation between the dosage of L-thyroxine and anthropometric measurements (age, height, body weight, and body fat content). No correlation was identified between the levels of anti-TPO and anti-TG and the dose of L-thyroxine in patients with Hashimoto’s thyroiditis. Conclusions: The mechanism regulating the levels of anti-TPO and anti-TG appears to be associated with a more advanced thyroid inflammation and disease process. Long-term observation of patients would be advisable. We present evidence of no effect of hormone dose on antibody levels in Hashimoto’s thyroiditis. Regardless of disease severity, immune regulation remains outside the scope of hormonal regulation. Full article
(This article belongs to the Special Issue Thyroid Disease: Updates from Diagnosis to Treatment: 2nd Edition)
Show Figures

Figure 1

27 pages, 2469 KB  
Review
The “Immune Rebellion” from the Intestines to the Liver: A Vicious Cycle That Causes the Liver to Collapse
by Wan-Ting Wang, Jia-Le Tian, Shuo Gao, Mao-Bing Wang, Yang Luo and Xun Li
Metabolites 2026, 16(2), 92; https://doi.org/10.3390/metabo16020092 - 25 Jan 2026
Viewed by 76
Abstract
The gut immune microenvironment and the liver engage in intricate information exchange via the gut–liver axis. The disruption of these interactions plays a pivotal role in the formation and exacerbation of pathological damage to the liver. The gut immune microenvironment is not an [...] Read more.
The gut immune microenvironment and the liver engage in intricate information exchange via the gut–liver axis. The disruption of these interactions plays a pivotal role in the formation and exacerbation of pathological damage to the liver. The gut immune microenvironment is not an independent layer of the gut barrier; rather, it permeates and regulates all other barrier functions, serving as the core coordinator. Disruption of the immune microenvironment in the gut–liver axis drives progression across the full disease spectrum—from steatosis to hepatitis, fibrosis, and even liver cancer—through the continuous influx of immune-stimulatory signals that overwhelm the liver’s intrinsic immune regulatory mechanisms. Dysfunction of innate immunity components, amplification of inflammatory factors and key cellular signaling pathways, activation of adaptive immune T cells, and systemic effects mediated by liver-derived inflammatory factors collectively form a disordered immune microenvironment. This damages the intestinal barrier and exacerbates liver disease via the gut–liver axis, leading to further intestinal injury, thus establishing a self-reinforcing vicious cycle. Current therapeutic strategies based on modulating the gut–liver axis microenvironment remain limited, yet studies have demonstrated that suppressing gut immune cells, cytokines, and signaling pathways can help delay liver disease progression. Hopefully, future combined, precise, and cutting-edge gut immunotherapies will provide more effective strategies for liver disease treatment. Full article
(This article belongs to the Section Thematic Reviews)
Show Figures

Graphical abstract

22 pages, 3540 KB  
Article
Targeted Removal of HCV E2 N2 N-Glycan Is Associated with Improved Immune Responses in Mice
by Yuan-Qin Min, Yu-Shan Ren, Wen-Wen Zhang, Yi-Dan Zhou and Min Liu
Biomolecules 2026, 16(2), 183; https://doi.org/10.3390/biom16020183 - 24 Jan 2026
Viewed by 142
Abstract
Hepatitis C virus (HCV) still lacks a licensed vaccine. The envelope glycoprotein E2 is a key neutralizing target, but its dense N-glycan shield can hinder epitope exposure. In this study, we revisit E2 glycan editing and examine whether single-site deletion preserves antigen integrity [...] Read more.
Hepatitis C virus (HCV) still lacks a licensed vaccine. The envelope glycoprotein E2 is a key neutralizing target, but its dense N-glycan shield can hinder epitope exposure. In this study, we revisit E2 glycan editing and examine whether single-site deletion preserves antigen integrity while improving immune responses in mice under a DNA immunization setting. Using a secreted E2 ectodomain (sE2384–661), we generated five N to D mutants at conserved sites (N1, N2, N4, N6, and N11) and evaluated them in a unified DNA immunization model with identical CpG content and delivery conditions across groups. The N2 mutant (N423, sE2-N2) maintained expression, secretion, and ER localization; furthermore, in mice, it was associated with higher anti-E2 titers and greater inhibition of H77 (genotype 1a) HCVcc at the tested dilutions, with limited activity against Con1 (1b). Cellular analyses showed increased IFN-γ ELISPOT counts and higher frequencies of granzyme B+/perforin+ CD8+ T cells after N2 immunization, while IL-4 remained low. Functionally, N2 elicited stronger specific lysis of CT26-sE2 targets in vitro and slowed CT26-sE2 tumor growth in vivo. In HCV-infected ICR4R+ mice, therapeutic vaccination with sE2-N2 reduced blood HCV RNA and hepatic readouts compared with sE2. A monoclonal antibody isolated from sE2-N2-immunized mice (1C1) neutralized HCVcc in vitro and, after passive transfer, lowered viremia and liver signals in infected mice. Collectively, these findings indicate that selective removal of the N2 glycan preserves antigen properties and is associated with improved humoral and cellular immunity and measurable in vivo activity, supporting targeted glycan editing as a practical strategy to refine E2-based HCV vaccines. Full article
Show Figures

Figure 1

27 pages, 3846 KB  
Article
The Safety of Alcaligenes Lipid A in a Virus-Induced Immune Disease Model Associated with IgA, Th17 Cells, and Microbiota
by Ijaz Ahmad, Seiichi Omura, Sundar Khadka, Fumitaka Sato, Ah-Mee Park, Cong Thanh Nguyen, Sandesh Rimal, Koichi Fukase, Atsushi Shimoyama and Ikuo Tsunoda
Viruses 2026, 18(2), 155; https://doi.org/10.3390/v18020155 - 23 Jan 2026
Viewed by 154
Abstract
Lipid A is a component of lipopolysaccharide (LPS) of Gram-negative bacteria. Previously, we demonstrated that synthesized lipid A derived from Alcaligenes faecalis (ALA) could enhance antigen-specific immunoglobulin (Ig) A and T helper (Th) 17 responses, when ALA was co-administered experimentally with an antigen [...] Read more.
Lipid A is a component of lipopolysaccharide (LPS) of Gram-negative bacteria. Previously, we demonstrated that synthesized lipid A derived from Alcaligenes faecalis (ALA) could enhance antigen-specific immunoglobulin (Ig) A and T helper (Th) 17 responses, when ALA was co-administered experimentally with an antigen as a vaccine adjuvant. This raised concerns about the safety of the ALA usage, since IgA and Th17 responses have been suggested to play a pathogenic role in several immune-mediated diseases, including multiple sclerosis (MS). We investigated whether ALA administrations could exacerbate an animal model of MS, Theiler’s murine encephalomyelitis virus (TMEV) infection. TMEV-infected SJL/J mice were administered ALA at various time points, and their neurological signs were observed for 7 weeks. We found that ALA administrations did not exacerbate TMEV-induced inflammatory disease or viral persistence in the central nervous system (CNS), clinically or histologically. Furthermore, ALA administrations did not enhance TMEV-specific humoral and cellular responses, including IgA and Th17 responses. On the other hand, principal component analysis (PCA) of the fecal, not the ileal, samples showed significant changes in the microbiota, characterized by increases in the relative abundance of bacteria belonging to the phylum Bacteroidota, including the genera Alistipes and Bacteroides. Therefore, ALA injections could be safe for use in immune-mediated diseases, whose immunopathology has been associated with IgA and Th17 responses. Full article
(This article belongs to the Section General Virology)
17 pages, 4374 KB  
Article
Development of a Cellular Membrane Nanovesicle-Based Vaccine Against Porcine Epidemic Diarrhea Virus
by Xianjun Wang, Weibing Zhang, Hong Hu, Wenjing Gao, Xu Ma, Yarong Wu, Yongfeng Qiao, Yang Wang, Ding Zhang, Chunbo Dong, Haidong Wang and Zhida Liu
Cells 2026, 15(2), 208; https://doi.org/10.3390/cells15020208 - 22 Jan 2026
Viewed by 148
Abstract
Porcine epidemic diarrhea virus (PEDV) has emerged as a major pathogen responsible for porcine diarrheal diseases, causing outbreaks of severe diarrhea and high mortality in neonatal piglets, thereby inflicting severe economic losses on the global swine industry. Current commercial PED vaccines, [...] Read more.
Porcine epidemic diarrhea virus (PEDV) has emerged as a major pathogen responsible for porcine diarrheal diseases, causing outbreaks of severe diarrhea and high mortality in neonatal piglets, thereby inflicting severe economic losses on the global swine industry. Current commercial PED vaccines, comprising conventional inactivated and live attenuated formulations, have exhibited progressively diminished efficacy in the face of emerging PEDV variants. The development of high-efficiency vaccine platforms is therefore critical for PED control. This study engineered a cellular membrane nanovesicle (CMN)-based vaccine, which differs from existing inactivated or subunit vaccines by presenting the PEDV spike (S) protein on the cell membranes to mimic the bilayer phospholipid structure of the viral envelope. The full-length S protein (FS, aa 19-1309) or a truncated S protein fragment (TS, aa 19-726) was expressed in Expi293F cells, followed by extraction of cell membranes to assemble antigen-displaying CMN vaccines. Compared with commercial live attenuated vaccine, administration of the CMN vaccine elicited high-titer neutralizing antibodies and elevated IFN-γ-producing CD8+ T cells in murine studies. Safety assessments revealed no adverse effects on body weight, hepatic/renal function indices, or histopathological parameters in vaccinated mice. Furthermore, immunization of piglets elicited notable humoral and CD8+ T cell immune responses. Collectively, the strategy of CMN-based vaccine described herein delivers a potential PEDV vaccine platform, thereby offering a novel avenue for next-generation veterinary vaccine development. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

18 pages, 772 KB  
Review
Inflammation and Diabetic Kidney Disease
by Rong Mei Zhang and Maria Luiza Caramori
Int. J. Mol. Sci. 2026, 27(2), 1097; https://doi.org/10.3390/ijms27021097 - 22 Jan 2026
Viewed by 44
Abstract
Diabetes is the leading cause of end-stage kidney disease and significantly contributes to morbidity and mortality in people with diabetes. Despite significant advances in the last decade, including the development of novel therapies, the residual risk in diabetic kidney disease (DKD) remains high. [...] Read more.
Diabetes is the leading cause of end-stage kidney disease and significantly contributes to morbidity and mortality in people with diabetes. Despite significant advances in the last decade, including the development of novel therapies, the residual risk in diabetic kidney disease (DKD) remains high. One yet unaddressed factor in the pathogenesis of DKD is immune activation. Early in DKD, there is infiltration of macrophages, T-cells, B-cells, and dendritic cells in mouse models, while at later stages, neutrophils are also observed. This review will highlight novel insights into the contribution of immune cells to the development of DKD, with a particular focus on the innate immune system and the cellular crosstalk between immune cells and intrinsic kidney cells as contributors to DKD. One example of this bidirectional crosstalk is observed between macrophages and podocytes. While macrophages can directly mediate podocyte injury and apoptosis via TNF-α secretion, podocytes secrete cytokines that further recruit macrophages. Understanding the role of immune-mediated injury in kidney disease is critical in reducing the residual risk of DKD. Full article
Show Figures

Figure 1

14 pages, 260 KB  
Review
A Review of Bispecific Antibody Therapy for Relapsed/Refractory Diffuse Large B-Cell Lymphoma and Implementation in a Community Hospital
by Chase Atiga and Haifaa Abdulhaq
Lymphatics 2026, 4(1), 3; https://doi.org/10.3390/lymphatics4010003 - 20 Jan 2026
Viewed by 147
Abstract
Patients with Relapsed/Refractory Diffuse Large B-cell Lymphoma (R/R DLBCL) harbor a poor prognosis. Novel therapies, such as bispecific antibodies (BsAbs), provide an effective therapeutic option for such patients. BsAbs are studied both as monotherapy and combination therapy for patients with R/R DLBCL with [...] Read more.
Patients with Relapsed/Refractory Diffuse Large B-cell Lymphoma (R/R DLBCL) harbor a poor prognosis. Novel therapies, such as bispecific antibodies (BsAbs), provide an effective therapeutic option for such patients. BsAbs are studied both as monotherapy and combination therapy for patients with R/R DLBCL with promising results. Unlike cellular therapies, such as autologous stem cell transplant (ASCT) or chimeric antigen receptor therapy (CAR-T), BsAbs are more amenable to administration in a community setting, given the lower incidence and severity of key toxicities, such as cytokine release syndrome (CRS) and immune effector cell-associated neurologic syndrome (ICANS). Deployment of BsAbs in the community setting requires operational considerations and a multidisciplinary team approach. This review will discuss the currently approved BsAb treatment regimens and our community institution’s experience in implementing BsAbs. Full article
24 pages, 7070 KB  
Article
A Pool of Ferritin Nanoparticles Delivering Six Proteins of African Swine Fever Virus Induces Robust Humoral and Cellular Immune Responses in Pigs
by Zhanhao Lu, Dailang Zhong, Xin Song, Jing Lan, Yanjin Wang, Rui Luo, Shengmei Chen, Ruojia Huang, Hua-Ji Qiu, Yongfeng Li, Tao Wang and Yuan Sun
Vaccines 2026, 14(1), 93; https://doi.org/10.3390/vaccines14010093 - 19 Jan 2026
Viewed by 230
Abstract
Background/Objectives: Inadequate characterization of protective antigens poses a significant challenge to the development of vaccines for African swine fever (ASF), particularly for antigen-dependent formulations such as subunit, mRNA, and recombinant viral vector vaccines. To address this, we aimed to screen African swine [...] Read more.
Background/Objectives: Inadequate characterization of protective antigens poses a significant challenge to the development of vaccines for African swine fever (ASF), particularly for antigen-dependent formulations such as subunit, mRNA, and recombinant viral vector vaccines. To address this, we aimed to screen African swine fever virus (ASFV) antigens and enhance their immunogenicity using a nanoparticle delivery platform. Methods: Here, six ASFV antigens (p30, p54, pE120R, pH124R, pE184L, and CD2v) were purified and used to immunize pigs individually. The effects of antibodies induced by these six antigens on ASFV replication or hemadsorption was evaluated in primary porcine alveolar macrophages (PAMs). These six antigens were, respectively, conjugated to ferritin via SpyTag/SpyCatcher to prepare six ferritin nanoparticles. A cocktail of the six mixed antigens or a cocktail of the six mixed nanoparticles was used to immunize pigs separately, and the differences in induced humoral and cellular immune responses were compared. Results: Antibodies generated against p30, p54, pE120R, pH124R, and pE184L in immunized pigs significantly inhibited ASFV replication in PAMs, while anti-CD2v antibodies specifically obstructed the hemadsorption of ASFV. Notably, immunization with a cocktail of these antigen-conjugated nanoparticles elicited a stronger virus-inhibitory antibody response compared to immunization with a cocktail of antigen monomers. Furthermore, nanoparticle immunization induced robust cellular immunity, evidenced by elevated serum IFN-γ, increased numbers of ASFV-specific IFN-γ-secreting cells, and an expanded CD8+ T cell population. Conclusions: Our study identifies a set of promising ASFV antigen candidates and demonstrates that ferritin nanoparticle delivery synergistically enhances both humoral and cellular immune responses against ASFV, providing a rational strategy for multi-antigen ASF vaccine design. Full article
Show Figures

Graphical abstract

Back to TopTop