Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Stichopodidae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5273 KiB  
Article
Structure of Genes Encoding Oxidosqualene Cyclases—Key Enzymes of Triterpenoid Biosynthesis from Sea Cucumber Eupentacta fraudatrix
by Sergey N. Baldaev, Viktoria E. Chausova, Ksenia V. Isaeva, Alexey V. Boyko, Valentin A. Stonik and Marina P. Isaeva
Int. J. Mol. Sci. 2024, 25(23), 12881; https://doi.org/10.3390/ijms252312881 - 29 Nov 2024
Viewed by 1030
Abstract
Oxidosqualene cyclases (OSCs) are enzymes responsible for converting linear triterpenes into tetracyclic ones, which are known as precursors of other important and bioactive metabolites. Two OSCs genes encoding parkeol synthase and lanostadienol synthase have been found in representatives of the genera Apostichopus and [...] Read more.
Oxidosqualene cyclases (OSCs) are enzymes responsible for converting linear triterpenes into tetracyclic ones, which are known as precursors of other important and bioactive metabolites. Two OSCs genes encoding parkeol synthase and lanostadienol synthase have been found in representatives of the genera Apostichopus and Stichopus (family Stichopodidae, order Synallactida). As a limited number of sea cucumber OSCs have been studied thus far, OSCs encoding gene(s) of the sea cucumber Eupentacta fraudatrix (family Sclerodactylidae, order Dendrochirotida) were investigated to fill this gap. Here, we employed RACEs, molecular cloning, and Oxford Nanopore Technologies to identify candidate OSC mRNAs and genes. The assembled cDNAs were 2409 bp (OSC1) and 3263 bp (OSC2), which shared the same CDS size of 2163 bp encoding a 721-amino-acid protein. The E. fraudatrix OSC1 and OSC2 had higher sequence identity similarity to each other (77.5%) than to other holothurian OSCs (64.7–71.0%). According to the sequence and molecular docking analyses, OSC1 with L436 is predicted to be parkeol synthase, while OSC2 with Q439 is predicted to be lanostadienol synthase. Based on the phylogenetic analysis, E. fraudatrix OSCs cDNAs clustered with other holothurian OSCs, forming the isolated branch. As a result of gene analysis, the high polymorphism and larger size of the OSC1 gene suggest that this gene may be an ancestor of the OSC2 gene. These results imply that the E. fraudatrix genome contains two OSC genes whose evolutionary pathways are different from those of the OSC genes in Stichopodidae. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 9022 KiB  
Article
The Complete Mitochondrial Genome of Stichopus naso (Aspidochirotida: Stichopodidae: Stichopus) and Its Phylogenetic Position
by Zhuobo Li, Bo Ma, Xiaomin Li, Ying Lv, Xiao Jiang, Chunhua Ren, Chaoqun Hu and Peng Luo
Genes 2022, 13(5), 825; https://doi.org/10.3390/genes13050825 - 5 May 2022
Cited by 4 | Viewed by 2780
Abstract
The mitochondrial genome is widely used to study the molecular evolution of and perform phylogenetic analyses on animals. In this study, the complete mitochondrial genome (mitogenome) of Stichopus naso was sequenced. The mitogenome was 16,239 bp in length and contained 13 protein-coding genes [...] Read more.
The mitochondrial genome is widely used to study the molecular evolution of and perform phylogenetic analyses on animals. In this study, the complete mitochondrial genome (mitogenome) of Stichopus naso was sequenced. The mitogenome was 16,239 bp in length and contained 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA genes (rRNAs). The genome composition showed positive AT-skew (0.023) and negative GC-skew (−0.158). The order of the mitochondrial genes was consistent with those from the Stichopus and Isostichopus species, whereas it was different from those of other species of Aspidochirotida. The phylogenetic analysis, based on the nucleotide sequences of 13 PCGs through the methods of Bayesian inference (BI) and maximum likelihood (ML), indicated that S. naso has close relationships with S. horrens and S. monotuberculatus, and belongs to a member of Stichopodidae. Our study provides a reference mitogenome for further molecular evolution studies and phylogenetic research on sea cucumbers. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

25 pages, 4677 KiB  
Article
Chemical Defense Mechanisms and Ecological Implications of Indo-Pacific Holothurians
by Elham Kamyab, Sven Rohde, Matthias Y. Kellermann and Peter J. Schupp
Molecules 2020, 25(20), 4808; https://doi.org/10.3390/molecules25204808 - 19 Oct 2020
Cited by 21 | Viewed by 4808
Abstract
Sea cucumbers are slow-moving organisms that use morphological, but also a diverse combination of chemical defenses to improve their overall fitness and chances of survival. Since chemical defense compounds are also of great pharmaceutical interest, we pinpoint the importance of biological screenings that [...] Read more.
Sea cucumbers are slow-moving organisms that use morphological, but also a diverse combination of chemical defenses to improve their overall fitness and chances of survival. Since chemical defense compounds are also of great pharmaceutical interest, we pinpoint the importance of biological screenings that are a relatively fast, informative and inexpensive way to identify the most bioactive organisms prior to further costly and elaborate pharmacological screenings. In this study, we investigated the presence and absence of chemical defenses of 14 different sea cucumber species from three families (Holothuriidae, Stichopodidae and Synaptidae) against ecological factors such as predation and pathogenic attacks. We used the different sea cucumber crude extracts as well as purified fractions and pure saponin compounds in a portfolio of ecological activity tests including fish feeding assays, cytotoxicity tests and antimicrobial assays against environmental pathogenic and non-pathogenic bacteria. Furthermore, we quantified and correlated the concentrations of sea cucumber characteristic saponin compounds as effective chemical defensive compounds in all 14 crude extracts by using the vanillin–sulfuric acid test. The initial results revealed that among all tested sea cucumber species that were defended against at least one ecological threat (predation and/or bacterial attack), Bohadschiaargus, Stichopuscholoronotus and Holothuria fuscopunctata were the three most promising bioactive sea cucumber species. Therefore, following further fractionation and purification attempts, we also tested saponin-containing butanol fractions of the latter, as well as two purified saponin species from B. argus. We could demonstrate that both, the amount of saponin compounds and their structure likely play a significant role in the chemical defense strategy of the sea cucumbers. Our study concludes that the chemical and morphological defense mechanisms (and combinations thereof) differ among the ecological strategies of the investigated holothurian species in order to increase their general fitness and level of survival. Finally, our observations and experiments on the chemical ecology of marine organisms can not only lead to a better understanding of their ecology and environmental roles but also can help in the better selection of bioactive organisms/compounds for the discovery of novel, pharmacologically active secondary metabolites in the near future. Full article
Show Figures

Figure 1

Back to TopTop