Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Stentor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5636 KB  
Article
Assessment of the Active Sludge Microorganisms Population During Wastewater Treatment in a Micro-Pilot Plant
by Daniela Roxana Popovici, Catalina Gabriela Gheorghe and Cristina Maria Dușescu-Vasile
Bioengineering 2024, 11(12), 1306; https://doi.org/10.3390/bioengineering11121306 - 23 Dec 2024
Cited by 5 | Viewed by 2821
Abstract
Knowledge of the impact of chemicals on the environment is important for assessing the risks that chemicals can generate in ecosystems. With the help of pilot-scale micro-tests, it was possible to evaluate the biological sludge in terms of its chemical and biological composition, [...] Read more.
Knowledge of the impact of chemicals on the environment is important for assessing the risks that chemicals can generate in ecosystems. With the help of pilot-scale micro-tests, it was possible to evaluate the biological sludge in terms of its chemical and biological composition, information that can be applied on an industrial scale in treatment plants. The important parameters analyzed in the evaluation of the biodegradability of wastewater were pH, chemical composition (NH4+, NO3, NO2, and PO43−), dry substance (DS), inorganic substance (IS), and organic substance (OS), and the biological oxygen demand (BOD)/chemical oxygen consumption (COD) ratio. The examination revealed the presence of free active ciliates Aspidisca polystyla, Lyndonotus setigerum, Vorticella microstoma, fixed by Zooglee, Paramecium sp., Opercularia, Colpoda colpidium, Euplotes, Didinum nasutum, Stentor, and Acineta tuberosa, metazoa Rotifers, filamentous algae, Nostoc and Anabena, and bacteria Bacillus subtilis, Nocardia, and Microccocus luteus. The novelty of this study lies in the fact that we carried out a study to evaluate the population of microorganisms starting from the premise that the probability of biodegradation of substances is directly proportional to the number of microorganisms existing in the environment and their enzymatic equipment. Full article
(This article belongs to the Special Issue Biological Wastewater Treatment and Resource Recovery)
Show Figures

Figure 1

14 pages, 2261 KB  
Article
Responses of Zooplankton Community Pattern to Environmental Factors along the Salinity Gradient in a Seagoing River in Tianjin, China
by Xuewei Sun, Huayong Zhang, Zhongyu Wang, Tousheng Huang, Wang Tian and Hai Huang
Microorganisms 2023, 11(7), 1638; https://doi.org/10.3390/microorganisms11071638 - 23 Jun 2023
Cited by 14 | Viewed by 3181
Abstract
As the primary consumers in aquatic organisms, zooplankton play an important role in aquatic ecosystems. It is valuable for management and researchers to have an insight into the responses of zooplankton community patterns to environmental factors. In this study, RDA and variation partitioning [...] Read more.
As the primary consumers in aquatic organisms, zooplankton play an important role in aquatic ecosystems. It is valuable for management and researchers to have an insight into the responses of zooplankton community patterns to environmental factors. In this study, RDA and variation partitioning analysis were adopted to determine the important environmental factors affecting zooplankton abundance and biomass, as well as the relative importance of different environmental factors. The findings reveal that TN (total nitrogen), WD (water depth), pH, and SAL (salinity) were all important abiotic factors shaping the zooplankton community pattern in the study area. TN affected protozoa by influencing Stentor amethystinus, while the effects of WD on copepods may have been mainly induced by the responses of Calanus sinicus and Paracyclopina nana. By inhibiting Stentor amethystinus and Vorticella lutea, pH significantly affected protozoa. In addition, Rotifera and copepods were affected by SAL mainly through the responses of Brachionus calyciflorus, Calanus sinicus, and Ectocyclops phaleratus. Importantly, fundamental alternations in the variation trends of zooplankton abundance and biomass along the salinity gradient were found when the salinity was approximately 4–5. By combining these results with the findings on phytoplankton responses to salinity in previous studies, it can be concluded that salinity may influence the river ecosystem by influencing zooplankton abundance and biomass rather than phytoplankton. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 4115 KB  
Article
Chemical Defence by Sterols in the Freshwater Ciliate Stentor polymorphus
by Federico Buonanno, Francesco Trenti, Gabriele Achille, Adriana Vallesi, Graziano Guella and Claudio Ortenzi
Biology 2022, 11(12), 1749; https://doi.org/10.3390/biology11121749 - 30 Nov 2022
Cited by 3 | Viewed by 2876
Abstract
Heterotrich ciliates typically retain toxic substances in specialized ejectable organelles, called extrusomes, which are used in predator-prey interactions. In this study, we analysed the chemical defence strategy of the freshwater heterotrich ciliate Stentor polymorphus against the predatory ciliate Coleps hirtus, and the [...] Read more.
Heterotrich ciliates typically retain toxic substances in specialized ejectable organelles, called extrusomes, which are used in predator-prey interactions. In this study, we analysed the chemical defence strategy of the freshwater heterotrich ciliate Stentor polymorphus against the predatory ciliate Coleps hirtus, and the microturbellarian flatworm Stenostomum sphagnetorum. The results showed that S. polymorphus is able to defend itself against these two predators by deploying a mix of bioactive sterols contained in its extrusomes. Sterols were isolated in vivo and characterized by liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR), as ergosterol, 7-dehydroporiferasterol, and their two peroxidized analogues. The assessment of the toxicity of ergosterol and ergosterol peroxide against various organisms, indicated that these sterols are essential for the effectiveness of the chemical defence in S. polymorphus. Full article
Show Figures

Figure 1

19 pages, 2539 KB  
Article
Insights into the Mechanism of Pre-mRNA Splicing of Tiny Introns from the Genome of a Giant Ciliate Stentor coeruleus
by Jirayu Nuadthaisong, Tanaporn Phetruen, Chanakan Techawisutthinan and Sittinan Chanarat
Int. J. Mol. Sci. 2022, 23(18), 10973; https://doi.org/10.3390/ijms231810973 - 19 Sep 2022
Cited by 6 | Viewed by 3416
Abstract
Stentor coeruleus is a ciliate known for its regenerative ability. Recent genome sequencing reveals that its spliceosomal introns are exceptionally small. We wondered whether the multimegadalton spliceosome has any unique characteristics for removal of the tiny introns. First, we analyzed intron features and [...] Read more.
Stentor coeruleus is a ciliate known for its regenerative ability. Recent genome sequencing reveals that its spliceosomal introns are exceptionally small. We wondered whether the multimegadalton spliceosome has any unique characteristics for removal of the tiny introns. First, we analyzed intron features and identified spliceosomal RNA/protein components. We found that all snRNAs are present, whereas many proteins are conserved but slightly reduced in size. Some regulators, such as Serine/Arginine-rich proteins, are noticeably undetected. Interestingly, while most parts of spliceosomal proteins, including Prp8′s positively charged catalytic cavity, are conserved, regions of branching factors projecting to the active site are not. We conjecture that steric-clash avoidance between spliceosomal proteins and a sharply looped lariat might occur, and splicing regulation may differ from other species. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 6106 KB  
Article
Application of Integrated Fixed-Film Activated Sludge in a Conventional Wastewater Treatment Plant
by Magdalena Kuśnierz, Magdalena Domańska, Kamila Hamal and Agnieszka Pera
Int. J. Environ. Res. Public Health 2022, 19(10), 5985; https://doi.org/10.3390/ijerph19105985 - 14 May 2022
Cited by 13 | Viewed by 5796
Abstract
It is often only at the operation stage of a wastewater treatment plant that there is a need to adjust the treatment process in terms of variable hydraulic capacity, increased pollutant load, high/low concentration of suspended biomass, or the unfavorable phenomenon of reduced [...] Read more.
It is often only at the operation stage of a wastewater treatment plant that there is a need to adjust the treatment process in terms of variable hydraulic capacity, increased pollutant load, high/low concentration of suspended biomass, or the unfavorable phenomenon of reduced sedimentation capacity of the activated sludge. One of the ways to improve the treatment process efficiency is to increase the biologically active surface by using bio-carriers in the form of fibers, materials, or bio-balls. This paper presents the results of a wastewater treatment plant operation during the period of six months after the implementation of the integrated fixed-film activated sludge (IFAS) technology. The research showed that microorganisms developed both in the activated sludge and on the fibers, positively influencing the activated sludge condition. During the start-up of the IFAS process, ciliates predominated over the other species. However, as oxygen content was high (2 mg/dm3 and more) and textile beds were used, the protozoan population developed intensively, and small metazoans became increasingly common. Throughout the research period, nitrifying and phosphorus-accumulating bacteria were observed both in the activated sludge and on the fibers. Between the 59th and 184th day of operation, numerous microorganisms were detected on the fibers and in the activated sludge, testifying to low biological oxygen demand, good aerobic conditions for nitrification, and long sludge age. However, the process seemed to break down after day 72, when the occurrence of metazoan led to reduced sludge production; after day 88, chemical oxygen demand and total suspended solids in the outflow increased, and oligochaetes and rotifers dominated the suspended sludge and fibers. Results also showed that the textile bed and low ammonia concentration became an excellent substrate for the development of Stentor sp. With regard to chemical and biological oxygen demand, total nitrogen- and total phosphorus-effluent concentrations were mostly within the legally permissible limits throughout the 184 days of operation. Full article
(This article belongs to the Collection Municipal Wastewater Treatment and Sludge Treatment and Disposal)
Show Figures

Figure 1

12 pages, 2511 KB  
Article
RNA Interference by Cyanobacterial Feeding Demonstrates the SCSG1 Gene Is Essential for Ciliogenesis during Oral Apparatus Regeneration in Stentor
by Wei Wei, Chuanqi Jiang, Xiaocui Chai, Juyuan Zhang, Cheng-Cai Zhang, Wei Miao and Jie Xiong
Microorganisms 2021, 9(1), 176; https://doi.org/10.3390/microorganisms9010176 - 15 Jan 2021
Cited by 6 | Viewed by 3336
Abstract
In the giant ciliate Stentor coeruleus, oral apparatus (OA) regeneration is an experimentally tractable regeneration paradigm that occurs via a series of morphological steps. OA regeneration is thought to be driven by a complex regulatory system that orchestrates the temporal expression of [...] Read more.
In the giant ciliate Stentor coeruleus, oral apparatus (OA) regeneration is an experimentally tractable regeneration paradigm that occurs via a series of morphological steps. OA regeneration is thought to be driven by a complex regulatory system that orchestrates the temporal expression of conserved and specific genes. We previously identified a S. coeruleus-specific gene (named SCSG1) that was significantly upregulated during the ciliogenesis stages of OA regeneration, with an expression peak at the stage of the first OA cilia appearance. We established a novel RNA interference (RNAi) method through cyanobacteria Synechocystis sp. PCC6803 feeding in S. coeruleus. The expression of SCSG1 gene was significantly knocked down by using this method and induced abnormal ciliogenesis of OA regeneration in S. coeruleus, suggesting that SCSG1 is essential for OA regeneration in S. coeruleus. This novel RNAi method by cyanobacterial feeding has potential utility for studying other ciliates. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

Back to TopTop