Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Spartina alterniflora Loisel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 78841 KB  
Article
Mangroves Invaded by Spartina alterniflora Loisel: A Remote Sensing-Based Comparison for Two Protected Areas in China
by Di Dong, Qing Gao and Huamei Huang
Forests 2024, 15(10), 1788; https://doi.org/10.3390/f15101788 - 11 Oct 2024
Cited by 3 | Viewed by 1916
Abstract
Mangroves are one of the world’s most productive and ecologically important ecosystems, and they are threatened by the widespread invasion of Spartina alterniflora Loisel in China. As few studies have examined the spatial pattern differences of S. alterniflora invasion and the nearby mangroves [...] Read more.
Mangroves are one of the world’s most productive and ecologically important ecosystems, and they are threatened by the widespread invasion of Spartina alterniflora Loisel in China. As few studies have examined the spatial pattern differences of S. alterniflora invasion and the nearby mangroves in different latitudes, we chose the Zhangjiang Estuary and the Dandou Sea, two representative mangrove–salt marsh ecotones in the north and south of the Tropic of Cancer, as the study areas for comparison. The object-based image analysis and visual interpretation methods were combined to construct fine-scale mangrove and S. alterniflora maps using high-resolution satellite imagery from 2005 to 2019. We applied spatial analysis, centroid migration, and landscape indexes to analyze the spatio–temporal distribution changes of mangroves and S. alterniflora in these two ecotones over time. We used the landscape expansion index to investigate the S. alterniflora invasion process and expansion patterns. The annual change rates of mangrove and S. alterniflora areas in the Zhangjiang Estuary showed a continuous growth trend. However, the mangrove areas in the Dandou Sea showed a fluctuating trend of increasing, decreasing, and then increasing again, while S. alterniflora areas kept rising from 2005 to 2019. Spartina alterniflora showed larger annual change rates compared with mangroves, indicating rapid S. alterniflora invasion in the intertidal zones. The opposite centroid migration directions of mangroves and S. alterniflora and the decreasing distances between the mangrove and S. alterniflora centroids indirectly revealed the fierce competition between mangroves and S. alterniflora for habitat resources. Both regions saw a decrease in mangrove patch integrality and connectivity. The integrality of mangrove patches in the Zhangjiang Estuary was always higher than those in the Dandou Sea. We observed the growth stage (2011–2014) and outbreak stage (2014–2019) of S. alterniflora expansion in the Zhangjiang Estuary and the outbreak stage (2005–2009) and plateau stage (2009–2019) of S. alterniflora expansion in the Dandou Sea. The expansion pattern of S. alterniflora varies in time and place. Since the expansion of S. alterniflora in the outbreak stage is rapid, with a large annual change rate, early warning of S. alterniflora invasion is quite important for the efficient and economical removal of the invasive plant. Continuous and accurate monitoring of S. alterniflora is highly necessary and beneficial for the scientific management and sustainable development of coastal wetlands. Full article
Show Figures

Figure 1

15 pages, 5447 KB  
Article
Simulation and Prediction of Sea Level Rise Impact on the Distribution of Mangrove and Spartina alterniflora in Coastal China
by Yaqi Zhang, Lina Cui, Deyu Xie and Jiang Jiang
Forests 2023, 14(4), 831; https://doi.org/10.3390/f14040831 - 18 Apr 2023
Cited by 5 | Viewed by 3538
Abstract
Sea level rise (SLR) has a significant impact on the vegetation ecosystem in coastal wetlands. Taking coastal China as the study area, the SLAMM (sea level rise affecting marsh model) was used to simulate the continuous long-term (2015–2100) effects of the spatiotemporal changes [...] Read more.
Sea level rise (SLR) has a significant impact on the vegetation ecosystem in coastal wetlands. Taking coastal China as the study area, the SLAMM (sea level rise affecting marsh model) was used to simulate the continuous long-term (2015–2100) effects of the spatiotemporal changes in mangrove and Spartina alterniflora in the four shared socioeconomic pathway scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) of sea level rise by 2100; then, ArcGis was used to assess and compare the impact of SLR on land use. The results are as follows. (1) The dramatic reduction in the vegetation area is positively correlated with the rate of sea level rise. (2) Tidal differences and sedimentation rates affect the response of mangrove and S. alterniflora distribution to sea level rise, as well as interactions between organisms. (3) The reasonable land use of coastal wetlands is important to researchers. Land use is one of the tools for effective mangrove conservation. In conclusion, in scientific research and production practice, it is important to combine the biotic and abiotic factors affecting the distribution of mangroves and S. alterniflora. Full article
(This article belongs to the Special Issue Coastal Forested Wetland Conservation and Carbon Function)
Show Figures

Figure 1

14 pages, 5425 KB  
Article
Swin-UperNet: A Semantic Segmentation Model for Mangroves and Spartina alterniflora Loisel Based on UperNet
by Zhenhua Wang, Jing Li, Zhilian Tan, Xiangfeng Liu and Mingjie Li
Electronics 2023, 12(5), 1111; https://doi.org/10.3390/electronics12051111 - 24 Feb 2023
Cited by 23 | Viewed by 6812
Abstract
As an ecosystem in transition from land to sea, mangroves play a vital role in wind and wave protection and biodiversity maintenance. However, the invasion of Spartina alterniflora Loisel seriously damages the mangrove wetland ecosystem. To protect mangroves scientifically and dynamically, a semantic [...] Read more.
As an ecosystem in transition from land to sea, mangroves play a vital role in wind and wave protection and biodiversity maintenance. However, the invasion of Spartina alterniflora Loisel seriously damages the mangrove wetland ecosystem. To protect mangroves scientifically and dynamically, a semantic segmentation model for mangroves and Spartina alterniflora Loise was proposed based on UperNet (Swin-UperNet). In the proposed Swin-UperNet model, a data concatenation module was proposed to make full use of the multispectral information of remote sensing images, the backbone network was replaced with a Swin transformer to improve the feature extraction capability, and a boundary optimization module was designed to optimize the rough segmentation results. Additionally, a linear combination of cross-entropy loss and Lovasz-Softmax loss was taken as the loss function of Swin-UperNet, which could address the problem of unbalanced sample distribution. Taking GF-1 and GF-6 images as the experiment data, the performance of the Swin-UperNet model was compared against that of other segmentation models in terms of pixel accuracy (PA), mean intersection over union (mIoU), and frames per second (FPS), including PSPNet, PSANet, DeepLabv3, DANet, FCN, OCRNet, and DeepLabv3+. The results showed that the Swin-UperNet model achieved the best PA of 98.87% and mIoU of 90.0%, and the efficiency of the Swin-UperNet model was higher than that of most models. In conclusion, Swin-UperNet is an efficient and accurate model for mangrove and Spartina alterniflora Loise segmentation synchronously, which will provide a scientific basis for Spartina alterniflora Loise monitoring and mangrove resource conservation and management. Full article
(This article belongs to the Special Issue Applications of Deep Neural Network for Smart City)
Show Figures

Figure 1

19 pages, 3613 KB  
Article
An Improved Submerged Mangrove Recognition Index-Based Method for Mapping Mangrove Forests by Removing the Disturbance of Tidal Dynamics and S. alterniflora
by Qing Xia, Ting-Ting He, Cheng-Zhi Qin, Xue-Min Xing and Wu Xiao
Remote Sens. 2022, 14(13), 3112; https://doi.org/10.3390/rs14133112 - 28 Jun 2022
Cited by 10 | Viewed by 5243
Abstract
Currently, it is a great challenge for remote sensing technology to accurately map mangrove forests owing to periodic inundation. A submerged mangrove recognition index (SMRI) using two high- and low-tide images was recently proposed to remove the influence of tides and identify mangrove [...] Read more.
Currently, it is a great challenge for remote sensing technology to accurately map mangrove forests owing to periodic inundation. A submerged mangrove recognition index (SMRI) using two high- and low-tide images was recently proposed to remove the influence of tides and identify mangrove forests. However, when the tidal height of the selected low-tide image is not at the lowest tidal level, the corresponding SMRI does not function well, which results in mangrove forests below the low tidal height being undetected. Furthermore, Spartina alterniflora Loisel (S. alterniflora) was introduced to China in 1979 and rapidly spread to become the most serious invasive plant along the Chinese coastline. The current SMRI has failed to distinguish S. alterniflora from submerged mangrove forests because of their similar spectral signatures. In this study, an SMRI-based mangrove forest mapping method was developed using the time series of Sentinel-2 images to mitigate the two aforementioned issues. In the proposed method, quantile synthesis was applied to the time series of Sentinel-2 images to generate a lowest-tide synthetic image for creating SMRI to identify submerged mangrove forests. Unsubmerged mangrove forests were classified using a support vector machine, and a preliminary mangrove forest map was created by merging them. In addition, S. alterniflora was distinguished from the mangrove forests by analyzing their phenological differences. Finally, mangrove forest mapping was performed by masking S. alterniflora. The proposed method was applied to the entire coastline of the Guangxi Province, China. The results showed that it can reliably and accurately identify submerged mangrove forests derived from SMRI by synthesizing low- and high-tide images using quantile synthesis, and the differentiation of S. alterniflora using phenological differences results in more accurate mangrove mapping. This work helps to improve the accuracy of mangrove forest mapping using SMRI and its feasibility for coastal wetland monitoring. It also provides data for sustainable management, ecological protection, and restoration of vegetation in coastal zones. Full article
(This article belongs to the Special Issue Advanced Earth Observations of Forest and Wetland Environment)
Show Figures

Graphical abstract

16 pages, 7415 KB  
Article
Invasive Alien Plants and Invasion Risk Assessment on Pingtan Island
by Minxian Luo, Lifang Xiao, Xuhui Chen, Kaiqin Lin, Bao Liu, Zongming He, Jinfu Liu and Shiqun Zheng
Sustainability 2022, 14(2), 923; https://doi.org/10.3390/su14020923 - 14 Jan 2022
Cited by 16 | Viewed by 4167
Abstract
Pingtan Island is the largest island in Fujian Province and the fifth largest island in China. The invasion of a large number of alien plants has had a profound impact on the local ecological environment. Because the harm caused by alien invasive plants [...] Read more.
Pingtan Island is the largest island in Fujian Province and the fifth largest island in China. The invasion of a large number of alien plants has had a profound impact on the local ecological environment. Because the harm caused by alien invasive plants varies greatly between different ecosystems and even in different habitats, the risk assessment index system suitable for one region may not be suitable for other regions. Therefore, it is necessary to establish a risk assessment index system for invasive alien plants on Pingtan Island. Alien plant communities in different habitats were studied by means of quadrat investigation and professional literature review. Some invasive alien species were selected and compiled into a list of invasive alien plants on Pingtan Island, and their species composition, origin, flora, life forms, and habitats were statistically grouped. There were 104 species in 80 genera and 37 families of alien invasive plants. Asteraceae, Fabaceae, Amaranthaceae, and Poaceae were the main families, accounting for 26.7%, 6.7%, 6.7% and 5.8% of the total species, respectively. The geographical components of families and genera have obvious tropical properties, accounting for 51.3% and 66.6% of the total species, respectively. These originated mainly from South America and North America, accounting for 45.5% and 30.1% of the total frequency, respectively. Annual herbs, biennial herbs, and perennial herbs accounted for 84.6% of the total species. Based on a DPSIR conceptual model and an AHP method, an invasion risk assessment of 104 invasive alien plants was conducted. The ecological adaptability, habitat distribution and landscape impact of species were considered in the selection of indicators and the formulation of standards. A total of 23 high-risk invasive species were identified at level I, 37 medium-risk invasive species at level II, and 44 low-risk invasive species at level III. Lantana camara L. had the highest risk score (49), followed by Cenchrus echinatus L. (45), Spartina alterniflora Loisel. (45), and Panicum repens L. (43.5). Suggestions are put forward to prevent the invasion of alien plants on Pingtan Island and to provide a theoretical basis for promoting the healthy and stable development of the ecological environment on the island. Full article
Show Figures

Figure 1

23 pages, 9748 KB  
Article
The Impact of Sea Embankment Reclamation on Greenhouse Gas GHG Fluxes and Stocks in Invasive Spartina alterniflora and Native Phragmites australis Wetland Marshes of East China
by Jian Li, Zhanrui Leng, Yueming Wu, Guanlin Li, Guangqian Ren, Guirong Wu, Yongcan Jiang, Taitiya Kenneth Yuguda and Daolin Du
Sustainability 2021, 13(22), 12740; https://doi.org/10.3390/su132212740 - 18 Nov 2021
Cited by 18 | Viewed by 4309
Abstract
The introduction of embankment seawalls to limit the expansion of the exotic C4 perennial grass Spartina alteniflora Loisel in eastern China’s coastal wetlands has more than doubled in the past decades. Previous research focused on the impact of sea embankment reclamation on [...] Read more.
The introduction of embankment seawalls to limit the expansion of the exotic C4 perennial grass Spartina alteniflora Loisel in eastern China’s coastal wetlands has more than doubled in the past decades. Previous research focused on the impact of sea embankment reclamation on the soil organic carbon (C) and nitrogen (N) stocks in salt marshes, whereas no study attempted to assess the impact of sea embankment reclamation on greenhouse gas (GHG) fluxes in such marshes. Here we examined the impact of sea embankment reclamation on GHG stocks and fluxes of an invasive Spartina alterniflora and native Phragmites australis dominated salt marsh in the Dongtai wetlands of China’s Jiangsu province. Sea embankment reclamation significantly decreased soil total organic C by 54.0% and total organic N by 73.2%, decreasing plant biomass, soil moisture, and soil salinity in both plants’ marsh. It increased CO2 emissions by 38.2% and 13.5%, and reduced CH4 emissions by 34.5% and 37.1%, respectively, in the Spartina alterniflora and Phragmites australis marshes. The coastal embankment wall also significantly increased N2O emission by 48.9% in the Phragmites australis salt marsh and reduced emissions by 17.2% in the Spartina alterniflora marsh. The fluxes of methane CH4 and carbon dioxide CO2 were similar in both restored and unrestored sections, whereas the fluxes of nitrous oxide N2O were substantially different owing to increased nitrate as a result of N-loading. Our findings show that sea embankment reclamation significantly alters coastal marsh potential to sequester C and N, particularly in native Phragmites australis salt marshes. As a result, sea embankment reclamation essentially weakens native and invasive saltmarshes’ C and N sinks, potentially depleting C and N sinks in coastal China’s wetlands. Stakeholders and policymakers can utilize this scientific evidence to strike a balance between seawall reclamation and invasive plant expansion in coastal wetlands. Full article
Show Figures

Graphical abstract

13 pages, 1838 KB  
Article
Effects of Invasive Spartina alterniflora Loisel. and Subsequent Ecological Replacement by Sonneratia apetala Buch.-Ham. on Soil Organic Carbon Fractions and Stock
by Jianxiang Feng, Shugong Wang, Shujuan Wang, Rui Ying, Fangmin Yin, Li Jiang and Zufu Li
Forests 2019, 10(2), 171; https://doi.org/10.3390/f10020171 - 17 Feb 2019
Cited by 32 | Viewed by 5452
Abstract
Background and Objectives: The rapid spread of invasive Spartina alterniflora Loisel. in the mangrove ecosystems of China was reduced using Sonneratia apetala Buch.-Ham. as an ecological replacement. Here, we studied the effects of invasion and ecological replacement using S. apetala on soil organic [...] Read more.
Background and Objectives: The rapid spread of invasive Spartina alterniflora Loisel. in the mangrove ecosystems of China was reduced using Sonneratia apetala Buch.-Ham. as an ecological replacement. Here, we studied the effects of invasion and ecological replacement using S. apetala on soil organic carbon fractions and stock on Qi’ao Island. Materials and Methods: Seven sites, including unvegetated mudflat and S. alterniflora, rehabilitated mangroves with different ages (one, six, and 10 years) and mature native Kandelia obovata Sheue, Liu, and Yong areas were selected in this study. Samples in the top 50 cm of soil were collected and then different fractions of organic carbon, including the total organic carbon (TOC), particulate organic carbon (POC), soil water dissolved carbon (DOC) and microbial biomass carbon (MBC), and the total carbon stock were measured and calculated. Results: The growth of S. alterniflora and mangroves significantly increased the soil TOC, POC, and MBC levels when compared to the mudflat. S. alterniflora had the highest soil DOC contents at 0–10 cm and 20–30 cm and the one-year restored mangroves had the highest MBC content. S. alterniflora and mangroves both had higher soil total carbon pools than the mudflat. Conclusions: The invasive S. alterniflora and young S. apetala forests had significantly lower soil TOC and POC contents and total organic carbon than the mature K. obovata on Qi’ao Island. These results indicate that ecological replacement methods can enhance long term carbon storage in Spartina-invaded ecosystems and native mangrove species are recommended. Full article
Show Figures

Figure 1

Back to TopTop