Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Somniosidae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2858 KiB  
Article
Evolutionary Conservation of Photophore Ultrastructure in Sharks: The Case of a Dalatiid Squalomorph
by Laurent Duchatelet, Charlotte Nuyt, Nathan Puozzo, Jérôme Mallefet and Jérôme Delroisse
Fishes 2023, 8(2), 87; https://doi.org/10.3390/fishes8020087 - 1 Feb 2023
Cited by 2 | Viewed by 2839
Abstract
Bioluminescence is a common ecological trait among many marine organisms, including three shark families: Etmopteridae, Dalatiidae, and Somniosidae. The kitefin shark, Dalatias licha (Bonnaterre, 1788), from the Dalatiidae family is the largest known luminous vertebrate. This study compares the light organ ultrastructure of [...] Read more.
Bioluminescence is a common ecological trait among many marine organisms, including three shark families: Etmopteridae, Dalatiidae, and Somniosidae. The kitefin shark, Dalatias licha (Bonnaterre, 1788), from the Dalatiidae family is the largest known luminous vertebrate. This study compares the light organ ultrastructure of D. licha with that of Etmopterus spinax, the type species of Etmopteridae, to gain a deeper understanding of the light emission process and its evolutionary conservation within shark families. The ultrastructure of D. licha’s photophores and the morphological changes that occur after hormonal stimulation (via melatonin and α-MSH, which stimulate or inhibit the bioluminescence, respectively) were examined. The photophores consist of a spherical pigmented sheath surrounding a unique, regionalized light-emitting cell (photocyte). The photocyte’s basal area contains a specific area filled with granular inclusions that resemble the glowon-type microsources of E. spinax, suggesting that this area is the intracellular site of light emission. An acidophilic secretion, not present in Etmopteridae, is also observed within the granular area and may be involved in photogenesis. The ultrastructure analysis reveals no lens cells or reticular layer, unlike in Etmopteridae photophores, indicating a simpler organization in Dalatiidae photophores. Melatonin stimulation causes the removal of pigments from the photophore-associated melanophores and an increase in the granular inclusion diameter and coverage in the granular area, further showing that this last area is the potential site of light emission, while α-MSH stimulation causes the extension of the melanophore pigments and a decrease in the granular inclusion diameter and coverage. These results support the evolutive conservation of photophore functional organization across luminous etmopterid and dalatiid sharks. Full article
Show Figures

Figure 1

12 pages, 2123 KiB  
Article
Photophore Morphogenesis and Extraocular Encephalopsin Expression during the Embryogenesis of Smalleye Pygmy Shark (Squaliolus aliae)
by Laurent Duchatelet, Hsuan-Ching Ho and Jérôme Mallefet
Diversity 2022, 14(12), 1100; https://doi.org/10.3390/d14121100 - 11 Dec 2022
Cited by 3 | Viewed by 2771
Abstract
Bioluminescence is a common phenomenon in marine organisms, especially in deep water where faint blue light remains. Among elasmobranchs, three families display the ability to emit light, the Etmopteridae, the Dalatiidae, and the Somniosidae. Luminous sharks have thousands of minute light organs, called [...] Read more.
Bioluminescence is a common phenomenon in marine organisms, especially in deep water where faint blue light remains. Among elasmobranchs, three families display the ability to emit light, the Etmopteridae, the Dalatiidae, and the Somniosidae. Luminous sharks have thousands of minute light organs, called photophores, that are mainly present ventrally and produce light. The main function of shark luminescence is counterillumination to camouflage the shark silhouette by mimicking the residual ambient light and avoiding being spotted by predators underneath. To perform counterillumination efficiently, luminescence needs to be finely adjusted. A new type of control was recently demonstrated via extraocular photoreception at the level of the light organ. An encephalopsin (i.e., opsin 3) was shown to be expressed in the vicinity of the photophore of an Etmopteridae species, Etmopterus spinax. This opsin was also demonstrated to be expressed concomitantly with the photophore development (i.e., when photophores become able to produce light) during E. spinax embryogenesis. To understand the photophore morphogenesis of different shark families, we analyzed the smalleye pygmy shark, Squaliolus aliae, with a photophore formation which represents the first report on the Dalatiidae family. Since Dalatiidae and Etmopteridae are phylogenetically closely related, the photophore morphogenesis was compared with an Etmopteridae representative, Etmopterus spinax. The results also reveal that Squaliolus aliae shares similar encephalopsin expression pattern as in Etmopterus spinax, which further supports evolutionary conservation of photophore morphogenesis as well as its own encephalopsin-based light perception across the two luminous shark families. Full article
Show Figures

Figure 1

21 pages, 9019 KiB  
Review
Glow on Sharks: State of the Art on Bioluminescence Research
by Laurent Duchatelet, Julien M. Claes, Jérôme Delroisse, Patrick Flammang and Jérôme Mallefet
Oceans 2021, 2(4), 822-842; https://doi.org/10.3390/oceans2040047 - 17 Dec 2021
Cited by 16 | Viewed by 10093
Abstract
This review presents a synthesis of shark bioluminescence knowledge. Up to date, bioluminescent sharks are found only in Squaliformes, and specifically in Etmopteridae, Dalatiidae and Somniosidae families. The state-of-the-art knowledge about the evolution, ecological functions, histological structure, the associated squamation and physiological control [...] Read more.
This review presents a synthesis of shark bioluminescence knowledge. Up to date, bioluminescent sharks are found only in Squaliformes, and specifically in Etmopteridae, Dalatiidae and Somniosidae families. The state-of-the-art knowledge about the evolution, ecological functions, histological structure, the associated squamation and physiological control of the photogenic organs of these elusive deep-sea sharks is presented. Special focus is given to their unique and singular hormonal luminescence control mechanism. In this context, the implication of the photophore-associated extraocular photoreception—which complements the visual adaptations of bioluminescent sharks to perceive residual downwelling light and luminescence in dim light environment—in the hormonally based luminescence control is depicted in detail. Similarities and differences between shark families are highlighted and support the hypothesis of an evolutionary unique ancestral appearance of luminescence in elasmobranchs. Finally, potential areas for future research on shark luminescence are presented. Full article
Show Figures

Figure 1

Back to TopTop