Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Smac, second mitochondria-derived activator of caspase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5953 KiB  
Article
(2,6-Dimethylphenyl)arsonic Acid Induces Apoptosis through the Mitochondrial Pathway, Downregulates XIAP, and Overcomes Multidrug Resistance to Cytostatic Drugs in Leukemia and Lymphoma Cells In Vitro
by Nathalie Wilke, Corazon Frias, Albrecht Berkessel and Aram Prokop
Int. J. Mol. Sci. 2024, 25(9), 4713; https://doi.org/10.3390/ijms25094713 - 26 Apr 2024
Cited by 1 | Viewed by 1732
Abstract
Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation [...] Read more.
Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

18 pages, 3969 KiB  
Article
Hydroxyl Group Acetylation of Quercetin Enhances Intracellular Absorption and Persistence to Upregulate Anticancer Activity in HepG2 Cells
by Kozue Sakao, Hanako Saruwatari, Shohei Minami and De-Xing Hou
Int. J. Mol. Sci. 2023, 24(23), 16652; https://doi.org/10.3390/ijms242316652 - 23 Nov 2023
Cited by 8 | Viewed by 2635
Abstract
Quercetin, a flavonoid compound widely distributed in many plants, is known to have potent antitumor effects on several cancer cells. Our previous study revealed that the acetylation of quercetin enhanced its antitumor effect. However, the mechanisms remain unknown. This study aimed to elucidate [...] Read more.
Quercetin, a flavonoid compound widely distributed in many plants, is known to have potent antitumor effects on several cancer cells. Our previous study revealed that the acetylation of quercetin enhanced its antitumor effect. However, the mechanisms remain unknown. This study aimed to elucidate the bioavailability of acylated quercetin in the HepG2 cell model based on its antitumor effect. The positions of quercetin 3,7,3′,4′-OH were acetylated as 3,7,3′,4′-O-tetraacetylquercetin (4Ac-Q). The inhibitory effect of 4Ac-Q on HepG2 cell proliferation was assessed by measuring cell viability. The apoptosis was characterized by apoptotic proteins and mitochondrial membrane potential shifts, as well as mitochondrial reactive oxygen species (ROS) levels. The bioavailability of 4Ac-Q was analyzed by measuring the uptake and metabolites in HepG2 cells with high performance liquid chromatography (HPLC)—photodiode array detector (PDA) and—ultraviolet/visible detector (UV/Vis). The results revealed that 4Ac-Q enhanced the inhibitory effect on HepG2 cell proliferation and induced its apoptosis significantly higher than quercetin. Protein array analysis of apoptosis-related protein indicated that 4Ac-Q increased the activation or expression of pro-apoptotic proteins, including caspase-3, -9, as well as second mitochondria-derived activator of caspases (SMAC), and suppressed the expression of apoptosis inhibiting proteins such as cellular inhibitor of apoptosis (cIAP)-1, -2, Livin, Survivin, and X-linked inhibitor of apoptosis (XIAP). Furthermore, 4Ac-Q stimulated mitochondrial cytochrome c release into the cytosol by enhancing ROS level and depolarizing the mitochondrial membrane. Finally, the analysis of uptake and metabolites of 4Ac-Q in HpG2 cells with HPLC-PDA and -UV/Vis revealed that 4Ac-Q was metabolized to quercetin and several different acetylated quercetins which caused 2.5-fold higher quercetin present in HepG2 cells than parent quercetin. These data demonstrated that acetylation of the quercetin hydroxyl group significantly increased its intracellular absorption. Taken together, our findings provide the first evidence that acetyl modification of quercetin not only substantially augments the intracellular absorption of quercetin but also bolsters its metabolic stability to elongate its intracellular persistence. Therefore, acetylation could serve as a strategic approach to enhance the ability of quercetin and analogous flavonoids to suppress cancer cell proliferation. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

16 pages, 4324 KiB  
Article
Host HSPD1 Translocation from Mitochondria to the Cytoplasm Induced by Streptococcus suis Serovar 2 Enolase Mediates Apoptosis and Loss of Blood–Brain Barrier Integrity
by Tong Wu, Li Jia, Siyu Lei, Hexiang Jiang, Jianan Liu, Na Li, Paul R. Langford, Hongtao Liu and Liancheng Lei
Cells 2022, 11(13), 2071; https://doi.org/10.3390/cells11132071 - 29 Jun 2022
Cited by 12 | Viewed by 3197
Abstract
Streptococcus suis serovar 2 (S. suis serovar 2) is a zoonotic pathogen that causes meningitis in pigs and humans, and is a serious threat to the swine industry and public health. Understanding the mechanism(s) by which S. suis serovar 2 penetrates the [...] Read more.
Streptococcus suis serovar 2 (S. suis serovar 2) is a zoonotic pathogen that causes meningitis in pigs and humans, and is a serious threat to the swine industry and public health. Understanding the mechanism(s) by which S. suis serovar 2 penetrates the blood–brain barrier (BBB) is crucial to elucidating the pathogenesis of meningitis. In a previous study, we found that expression of the virulence factor enolase (Eno) by S. suis serovar 2 promotes the expression of host heat shock protein family D member 1 (HSPD1) in brain tissue, which leads to the apoptosis of porcine brain microvascular endothelial cells (PBMECs) and increased BBB permeability, which in turn promotes bacterial translocation across the BBB. However, the mechanism by which HSPD1 mediates Eno-induced apoptosis remains unclear. In this study, we demonstrate that Eno promotes the translocation of HSPD1 from mitochondria to the cytoplasm, where HSPD1 binds to β-actin (ACTB), the translocated HSPD1, and its interaction with ACTB led to adverse changes in cell morphology and promoted the expression of apoptosis-related proteins, second mitochondria-derived activator of caspases (Smac), and cleaved caspase-3; inhibited the expression of X-linked inhibitor of apoptosis protein (XIAP); and finally promoted cell apoptosis. These results further elucidate the role of HSPD1 in the process of Eno-induced apoptosis and increased BBB permeability, increasing our understanding of the pathogenic mechanisms of meningitis, and providing a framework for novel therapeutic strategies. Full article
Show Figures

Figure 1

26 pages, 5048 KiB  
Article
Alternative NF-κB Signaling Discriminates Induction of the Tumor Marker Fascin by the Viral Oncoproteins Tax-1 and Tax-2 of Human T-Cell Leukemia Viruses
by Stefanie Heym, Caroline F. Mohr, Hanna C. Engelbrecht, Bernhard Fleckenstein and Andrea K. Thoma-Kress
Cancers 2022, 14(3), 537; https://doi.org/10.3390/cancers14030537 - 21 Jan 2022
Cited by 1 | Viewed by 2596
Abstract
Transcriptional regulation of the actin-bundling protein and tumor marker Fascin is highly diverse depending on cell and tumor type. Previously, we discovered that the viral oncoprotein Tax-1 of human T-cell leukemia virus type 1 (HTLV-1) considerably enhances Fascin expression in T-cells, depending on [...] Read more.
Transcriptional regulation of the actin-bundling protein and tumor marker Fascin is highly diverse depending on cell and tumor type. Previously, we discovered that the viral oncoprotein Tax-1 of human T-cell leukemia virus type 1 (HTLV-1) considerably enhances Fascin expression in T-cells, depending on classical NF-κB signaling. In this study, we asked if the non-oncogenic Tax-2 of the related HTLV-2 is still able to induce Fascin by using luciferase assays, immunoblot, and qPCR. We found that Tax-2 only slightly induces Fascin expression compared to Tax-1; however, both Tax-1 and Tax-2 comparably activated a 1.6 kb fragment in the human Fascin promoter including Tax-responsive elements. Furthermore, we identified a link between Tax-induced activity of the alternative NF-κB pathway and Fascin induction. While treatment with the second mitochondria-derived activator of caspases (SMAC)-mimetic AZD5582, a compound known to robustly activate alternative NF-κB signaling, did not induce Fascin, combination of AZD5582 with activation of classical NF-κB signaling by Tax-2 significantly induced Fascin expression. In conclusion, our data demonstrate that both classical and alternative NF-κB activity are necessary for strong Fascin induction by the viral Tax oncoproteins, thus, shedding new light on the regulation of Fascin in T-cells and during viral transformation. Full article
(This article belongs to the Special Issue Fascin in Cancer, from Prognostic Marker to Molecular Target)
Show Figures

Figure 1

16 pages, 1621 KiB  
Communication
Cyst Reduction by Melatonin in a Novel Drosophila Model of Polycystic Kidney Disease
by Cassandra Millet-Boureima, Roman Rozencwaig, Felix Polyak and Chiara Gamberi
Molecules 2020, 25(22), 5477; https://doi.org/10.3390/molecules25225477 - 23 Nov 2020
Cited by 11 | Viewed by 9230
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) causes progressive cystic degeneration of the renal tubules, the nephrons, eventually severely compromising kidney function. ADPKD is incurable, with half of the patients eventually needing renal replacement. Treatments for ADPKD patients are limited and new effective therapeutics [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) causes progressive cystic degeneration of the renal tubules, the nephrons, eventually severely compromising kidney function. ADPKD is incurable, with half of the patients eventually needing renal replacement. Treatments for ADPKD patients are limited and new effective therapeutics are needed. Melatonin, a central metabolic regulator conserved across all life kingdoms, exhibits oncostatic and oncoprotective activity and no detected toxicity. Here, we used the Bicaudal C (BicC) Drosophila model of polycystic kidney disease to test the cyst-reducing potential of melatonin. Significant cyst reduction was found in the renal (Malpighian) tubules upon melatonin administration and suggest mechanistic sophistication. Similar to vertebrate PKD, the BicC fly PKD model responds to the antiproliferative drugs rapamycin and mimics of the second mitochondria-derived activator of caspases (Smac). Melatonin appears to be a new cyst-reducing molecule with attractive properties as a potential candidate for PKD treatment. Full article
Show Figures

Graphical abstract

13 pages, 3988 KiB  
Article
Combinatorial Treatment of Birinapant and Zosuquidar Enhances Effective Control of HBV Replication In Vivo
by Emma Morrish, Liana Mackiewicz, Natasha Silke, Marc Pellegrini, John Silke, Gabriela Brumatti and Gregor Ebert
Viruses 2020, 12(8), 901; https://doi.org/10.3390/v12080901 - 17 Aug 2020
Cited by 9 | Viewed by 4746
Abstract
Chronic hepatitis B virus (HBV) infection remains a global health threat and affects hundreds of millions worldwide. Small molecule compounds that mimic natural antagonists of inhibitor of apoptosis (IAP) proteins, known as Smac-mimetics (second mitochondria-derived activator of caspases-mimetics), can promote the death of [...] Read more.
Chronic hepatitis B virus (HBV) infection remains a global health threat and affects hundreds of millions worldwide. Small molecule compounds that mimic natural antagonists of inhibitor of apoptosis (IAP) proteins, known as Smac-mimetics (second mitochondria-derived activator of caspases-mimetics), can promote the death of HBV-replicating liver cells and promote clearance of infection in preclinical models of HBV infection. The Smac-mimetic birinapant is a substrate of the multidrug resistance protein 1 (MDR1) efflux pump, and therefore inhibitors of MDR1 increase intracellular concentration of birinapant in MDR1 expressing cells. Liver cells are known to express MDR1 and other drug pump proteins. In this study, we investigated whether combining the clinical drugs, birinapant and the MDR1 inhibitor zosuquidar, increases the efficacy of birinapant in killing HBV expressing liver cells. We showed that this combination treatment is well tolerated and, compared to birinapant single agent, was more efficient at inducing death of HBV-positive liver cells and improving HBV-DNA and HBV surface antigen (HBsAg) control kinetics in an immunocompetent mouse model of HBV infection. Thus, this study identifies a novel and safe combinatorial treatment strategy to potentiate substantial reduction of HBV replication using an IAP antagonist. Full article
(This article belongs to the Special Issue Hepatitis B Virus: From Diagnostics to Treatments)
Show Figures

Graphical abstract

25 pages, 3244 KiB  
Review
Potency and Selectivity of SMAC/DIABLO Mimetics in Solid Tumor Therapy
by Xiao-Yun Zhao, Xiu-Yun Wang, Qi-Yao Wei, Yan-Ming Xu and Andy T. Y. Lau
Cells 2020, 9(4), 1012; https://doi.org/10.3390/cells9041012 - 18 Apr 2020
Cited by 41 | Viewed by 6066
Abstract
Aiming to promote cancer cell apoptosis is a mainstream strategy of cancer therapy. The second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) protein is an essential and endogenous antagonist of inhibitor of apoptosis proteins (IAPs). [...] Read more.
Aiming to promote cancer cell apoptosis is a mainstream strategy of cancer therapy. The second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) protein is an essential and endogenous antagonist of inhibitor of apoptosis proteins (IAPs). SMAC mimetics (SMs) are a series of synthetically chemical compounds. Via database analysis and literature searching, we summarize the potential mechanisms of endogenous SMAC inefficiency, degradation, mutation, releasing blockage, and depression. We review the development of SMs, as well as preclinical and clinical outcomes of SMs in solid tumor treatment, and we analyze their strengths, weaknesses, opportunities, and threats from our point of view. We also highlight several questions in need of further investigation. Full article
(This article belongs to the Special Issue Inhibitor of Apoptosis Proteins (IAPs) in Cancer Therapy)
Show Figures

Graphical abstract

24 pages, 1446 KiB  
Review
Future Therapeutic Directions for Smac-Mimetics
by Emma Morrish, Gabriela Brumatti and John Silke
Cells 2020, 9(2), 406; https://doi.org/10.3390/cells9020406 - 11 Feb 2020
Cited by 108 | Viewed by 9819
Abstract
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. [...] Read more.
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy. Full article
(This article belongs to the Special Issue Inhibitor of Apoptosis Proteins (IAPs) in Cancer Therapy)
Show Figures

Figure 1

17 pages, 2861 KiB  
Article
Cyst Reduction in a Polycystic Kidney Disease Drosophila Model Using Smac Mimics
by Cassandra Millet-Boureima, Ramesh Chingle, William D. Lubell and Chiara Gamberi
Biomedicines 2019, 7(4), 82; https://doi.org/10.3390/biomedicines7040082 - 18 Oct 2019
Cited by 7 | Viewed by 5376
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited malady affecting 12.5 million people worldwide. Therapeutic options to treat PKD are limited, due in part to lack of precise knowledge of underlying pathological mechanisms. Mimics of the second mitochondria-derived activator of caspases (Smac) [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited malady affecting 12.5 million people worldwide. Therapeutic options to treat PKD are limited, due in part to lack of precise knowledge of underlying pathological mechanisms. Mimics of the second mitochondria-derived activator of caspases (Smac) have exhibited activity as antineoplastic agents and reported recently to ameliorate cysts in a murine ADPKD model, possibly by differentially targeting cystic cells and sparing the surrounding tissue. A first-in-kind Drosophila PKD model has now been employed to probe further the activity of novel Smac mimics. Substantial reduction of cystic defects was observed in the Malpighian (renal) tubules of treated flies, underscoring mechanistic conservation of the cystic pathways and potential for efficient testing of drug prototypes in this PKD model. Moreover, the observed differential rescue of the anterior and posterior tubules overall, and within their physiologically diverse intermediate and terminal regions implied a nuanced response in distinct tubular regions contingent upon the structure of the Smac mimic. Knowledge gained from studying Smac mimics reveals the capacity for the Drosophila model to precisely probe PKD pharmacology highlighting the value for such critical evaluation of factors implicated in renal function and pathology. Full article
Show Figures

Graphical abstract

15 pages, 1321 KiB  
Review
Countering TRAIL Resistance in Melanoma
by Jürgen Eberle
Cancers 2019, 11(5), 656; https://doi.org/10.3390/cancers11050656 - 11 May 2019
Cited by 41 | Viewed by 7333
Abstract
Melanoma of the skin has become a prime example for demonstrating the success of targeted cancer therapy. Nevertheless, high mortality has remained, mainly related to tumor heterogeneity and inducible therapy resistance. But the development of new therapeutic strategies and combinations has raised hope [...] Read more.
Melanoma of the skin has become a prime example for demonstrating the success of targeted cancer therapy. Nevertheless, high mortality has remained, mainly related to tumor heterogeneity and inducible therapy resistance. But the development of new therapeutic strategies and combinations has raised hope of finally defeating this deadly disease. TNF-related apoptosis-inducing ligand (TRAIL) represents a promising antitumor strategy. The principal sensitivity of melanoma cells for TRAIL was demonstrated in previous studies; however, inducible resistance appeared as a major problem. To address this issue, combination strategies were tested, and survival pathway inhibitors were shown to sensitize melanoma cells for TRAIL-induced apoptosis. Finally, cell cycle inhibition was identified as a common principle of TRAIL sensitization in melanoma cells. Mitochondrial apoptosis pathways, pro- and antiapoptotic Bcl-2 proteins as well as the rheostat consisted of Smac (Second mitochondria-derived activator of caspase) and XIAP (X-linked inhibitor of apoptosis protein) appeared to be of particular importance. Furthermore, the role of reactive oxygen species (ROS) was recognized in this setting. Inducible TRAIL resistance in melanoma can be explained by (i) high levels of antiapoptotic Bcl-2 proteins, (ii) high levels of XIAP, and (iii) suppressed Bax activity. These hurdles have to be overcome to enable the use of TRAIL in melanoma therapy. Several strategies appear as particularly promising, including new TRAIL receptor agonists, Smac and BH3 mimetics, as well as selective kinase inhibitors. Full article
(This article belongs to the Special Issue TRAIL Signaling in Cancer Cells)
Show Figures

Figure 1

13 pages, 3698 KiB  
Article
Elucidating Cellular Population Dynamics by Molecular Density Function Perturbations
by Thanneer Malai Perumal and Rudiyanto Gunawan
Processes 2018, 6(2), 9; https://doi.org/10.3390/pr6020009 - 23 Jan 2018
Cited by 1 | Viewed by 5417
Abstract
Studies performed at single-cell resolution have demonstrated the physiological significance of cell-to-cell variability. Various types of mathematical models and systems analyses of biological networks have further been used to gain a better understanding of the sources and regulatory mechanisms of such variability. In [...] Read more.
Studies performed at single-cell resolution have demonstrated the physiological significance of cell-to-cell variability. Various types of mathematical models and systems analyses of biological networks have further been used to gain a better understanding of the sources and regulatory mechanisms of such variability. In this work, we present a novel sensitivity analysis method, called molecular density function perturbation (MDFP), for the dynamical analysis of cellular heterogeneity. The proposed analysis is based on introducing perturbations to the density or distribution function of the cellular state variables at specific time points, and quantifying how such perturbations affect the state distribution at later time points. We applied the MDFP analysis to a model of a signal transduction pathway involving TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-induced apoptosis in HeLa cells. The MDFP analysis shows that caspase-8 activation regulates the timing of the switch-like increase of cPARP (cleaved poly(ADP-ribose) polymerase), an indicator of apoptosis. Meanwhile, the cell-to-cell variability in the commitment to apoptosis depends on mitochondrial outer membrane permeabilization (MOMP) and events following MOMP, including the release of Smac (second mitochondria-derived activator of caspases) and cytochrome c from mitochondria, the inhibition of XIAP (X-linked inhibitor of apoptosis) by Smac, and the formation of the apoptosome. Full article
(This article belongs to the Special Issue Biological Networks)
Show Figures

Figure 1

21 pages, 4047 KiB  
Article
Apoptosis is Induced in Cancer Cells via the Mitochondrial Pathway by the Novel Xylocydine-Derived Compound JRS-15
by Chao Sun, Xiao-Xi Guo, Dan Zhu, Chuan Xiao, Xiao Bai, Yang Li, Zhuo Zhan, Xiang-Long Li, Zhi-Guang Song and Ying-Hua Jin
Int. J. Mol. Sci. 2013, 14(1), 850-870; https://doi.org/10.3390/ijms14010850 - 4 Jan 2013
Cited by 14 | Viewed by 7727
Abstract
The novel compound JRS-15 was obtained through the chemical modification of xylocydine. JRS-15 exhibited much stronger cytotoxic and pro-apoptotic activity than its parent compound in various cancer cell lines, with IC50 values in HeLa, HepG2, SK-HEP-1, PC-3M and A549 cells ranging from [...] Read more.
The novel compound JRS-15 was obtained through the chemical modification of xylocydine. JRS-15 exhibited much stronger cytotoxic and pro-apoptotic activity than its parent compound in various cancer cell lines, with IC50 values in HeLa, HepG2, SK-HEP-1, PC-3M and A549 cells ranging from 12.42 to 28.25 µM. In addition, it is more potent for killing cancer than non-cancerous cells. Mechanistic studies showed that JRS-15 treatment arrested cell cycle at the G1/S phase, which further triggered the translocation of Bax and Bak to the mitochondria, resulting in mitochondrial membrane potential (MMP) depolarization and the subsequent release of cytochrome c and the second mitochondria-derived activator of caspase (Smac). The sequential activation of caspase-9 and caspase-3/7 and the cleavage of poly (ADP-ribose) polymerase (PARP) were observed following these mitochondrial events. Caspase-8, an initiator caspase that is required to activate the membrane receptor-mediated extrinsic apoptosis pathway was not activated in JRS-15-treated cells. Further analysis showed that the levels of the anti-apoptotic proteins Bcl-xL and XIAP were significantly reduced upon JRS-15 treatment. Furthermore, the caspase-9 inhibitor z-LEHD-fmk, the pan-caspase inhibitor z-VAD-fmk, and Bcl-xL or XIAP overexpression all effectively prevented JRS-15-induced apoptosis. Taken together, these results indicate that JRS-15 induces cancer cell apoptosis by regulating multiple apoptosis-related proteins, and this compound may therefore be a good candidate reagent for anticancer therapy. Full article
(This article belongs to the Special Issue Signalling Molecules and Signal Transduction in Cells)
Show Figures

1 pages, 203 KiB  
Abstract
Discovery of Chemosensitizing Flavonoids from Eriobotrya japonica Using in silico and HPLC-SPE-NMR Techniques
by P. H. PFISTERER, P. SCHNEIDER, A. RUDY, J. M. ROLLINGER, A. M. VOLLMAR and H. STUPPNER
Sci. Pharm. 2009, 77(6), 172; https://doi.org/10.3797/scipharm.oephg.21.SL-05 - 16 Apr 2009
Viewed by 1023
Abstract
Mimetics of the second mitochondria-derived activator of caspases (Smac) increase the sensitivity of tumor cells towards chemotherapeutics in cancer therapy [1]. Our aim was the discovery of naturally derived small molecule Smac-mimetics from the medicinal plant Eriobotrya japonica Lindl. (Rosaceae), which is known [...] Read more.
Mimetics of the second mitochondria-derived activator of caspases (Smac) increase the sensitivity of tumor cells towards chemotherapeutics in cancer therapy [1]. Our aim was the discovery of naturally derived small molecule Smac-mimetics from the medicinal plant Eriobotrya japonica Lindl. (Rosaceae), which is known to contain cytotoxic constituents [2]. Using a previously generated and validated pharmacophore model [3] 122 3D-molecules (ERIO-database) of known constituents from the leaves of E. japonica were subjected to virtual screening. We focused on acylated flavonol monorhamnosides (AFMR) as promising phytochemical class due to the statistical evaluation of the virtual hits. AFMR were identified in the methanol extract by LC-MS and enriched by different chromatographic methods. In the Nicoletti test [4], the combination of the AFMR-mixture with sub-optimal concentrations of the chemotherapeutic etoposide strongly induced cell death in S-Jurkat and XIAP overexpressing Jurkat cells. Since the AFMR-mixture was not separable by conventional methods, we used an HPLC-SPE-NMR approach for the structural identification of single compounds. The combination of the in silico and HPLC-SPE-NMR techniques enabled the insight into ligand-target interactions of single compounds from a complex mixture. Full article
Back to TopTop