Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Sleeping Beauty transposase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2006 KiB  
Review
Current Non-Viral-Based Strategies to Manufacture CAR-T Cells
by Leon Gehrke, Vasco Dos Reis Gonçalves, Dominik Andrae, Tamas Rasko, Patrick Ho, Hermann Einsele, Michael Hudecek and Sabrina R. Friedel
Int. J. Mol. Sci. 2024, 25(24), 13685; https://doi.org/10.3390/ijms252413685 - 21 Dec 2024
Cited by 3 | Viewed by 3304
Abstract
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their [...] Read more.
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods. While viral vectors offer high transfection efficiencies, concerns regarding potential malignant transformation coupled with costly and time-consuming vector manufacturing are constant drivers in the search for cheaper, easier-to-use, safer, and more efficient alternatives. In this review, we examine different non-viral gene transfer methods as alternatives for CAR-T cell production, their advantages and disadvantages, and examples of their applications. Transposon-based gene transfer methods lead to stable but non-targeted gene integration, are easy to handle, and achieve high gene transfer rates. Programmable endonucleases allow targeted integration, reducing the potential risk of integration-mediated malignant transformation of CAR-T cells. Non-integrating CAR-encoding vectors avoid this risk completely and achieve only transient CAR expression. With these promising alternative techniques for gene transfer, all avenues are open to fully exploiting the potential of next-generation CAR-T cell therapy and applying it in a wide range of applications. Full article
(This article belongs to the Special Issue Chimeric Antigen Receptors Against Cancers and Autoimmune Diseases)
Show Figures

Figure 1

20 pages, 2716 KiB  
Article
Sleeping Beauty Transposon Insertions into Nucleolar DNA by an Engineered Transposase Localized in the Nucleolus
by Adrian Kovač, Csaba Miskey and Zoltán Ivics
Int. J. Mol. Sci. 2023, 24(19), 14978; https://doi.org/10.3390/ijms241914978 - 7 Oct 2023
Cited by 1 | Viewed by 2692
Abstract
Transposons are nature’s gene delivery vehicles that can be harnessed for experimental and therapeutic purposes. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in human cells, and is currently under clinical development for gene therapy. SB transposition occurs into [...] Read more.
Transposons are nature’s gene delivery vehicles that can be harnessed for experimental and therapeutic purposes. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in human cells, and is currently under clinical development for gene therapy. SB transposition occurs into the human genome in a random manner, which carries a risk of potential genotoxic effects associated with transposon integration. Here, we evaluated an experimental strategy to manipulate SB’s target site distribution by preferentially compartmentalizing the SB transposase to the nucleolus, which contains repetitive ribosomal RNA (rRNA) genes. We generated a fusion protein composed of the nucleolar protein nucleophosmin (B23) and the SB100X transposase, which was found to retain almost full transposition activity as compared to unfused transposase and to be predominantly localized to nucleoli in transfected human cells. Analysis of transposon integration sites generated by B23-SB100X revealed a significant enrichment into the p-arms of chromosomes containing nucleolus organizing regions (NORs), with preferential integration into the p13 and p11.2 cytobands directly neighboring the NORs. This bias in the integration pattern was accompanied by an enrichment of insertions into nucleolus-associated chromatin domains (NADs) at the periphery of nucleolar DNA and into lamina-associated domains (LADs). Finally, sub-nuclear targeting of the transposase resulted in preferential integration into chromosomal domains associated with the Upstream Binding Transcription Factor (UBTF) that plays a critical role in the transcription of 47S rDNA gene repeats of the NORs by RNA Pol I. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Genetics and Genomics in Germany)
Show Figures

Figure 1

25 pages, 4986 KiB  
Article
HMGXB4 Targets Sleeping Beauty Transposition to Germinal Stem Cells
by Anantharam Devaraj, Manvendra Singh, Suneel A Narayanavari, Guo Yong, Jiaxuan Chen, Jichang Wang, Mareike Becker, Oliver Walisko, Andrea Schorn, Zoltán Cseresznyés, Tamás Raskó, Kathrin Radscheit, Matthias Selbach, Zoltán Ivics and Zsuzsanna Izsvák
Int. J. Mol. Sci. 2023, 24(8), 7283; https://doi.org/10.3390/ijms24087283 - 14 Apr 2023
Cited by 1 | Viewed by 2855
Abstract
Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and [...] Read more.
Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and marks both germinal progenitor and somatic stem cells. SB piggybacks HMGXB4 to activate transposase expression and target transposition to germinal stem cells, thereby potentiating heritable transposon insertions. The HMGXB4 promoter is located within an active chromatin domain, offering multiple looping possibilities with neighboring genomic regions. HMGXB4 is activated by ERK2/MAPK1, ELK1 transcription factors, coordinating pluripotency and self-renewal pathways, but suppressed by the KRAB-ZNF/TRIM28 epigenetic repression machinery, also known to regulate transposable elements. At the post-translational level, SUMOylation regulates HMGXB4, which modulates binding affinity to its protein interaction partners and controls its transcriptional activator function via nucleolar compartmentalization. When expressed, HMGXB4 can participate in nuclear-remodeling protein complexes and transactivate target gene expression in vertebrates. Our study highlights HMGXB4 as an evolutionarily conserved host-encoded factor that assists Tc1/Mariner transposons to target the germline, which was necessary for their fixation and may explain their abundance in vertebrate genomes. Full article
(This article belongs to the Special Issue Frontiers in the Development of Germ Cells and Embryos)
Show Figures

Figure 1

21 pages, 3232 KiB  
Article
Enhanced Biosafety of the Sleeping Beauty Transposon System by Using mRNA as Source of Transposase to Efficiently and Stably Transfect Retinal Pigment Epithelial Cells
by Nina Harmening, Sandra Johnen, Zsuzsanna Izsvák, Zoltan Ivics, Martina Kropp, Thais Bascuas, Peter Walter, Andreas Kreis, Bojan Pajic and Gabriele Thumann
Biomolecules 2023, 13(4), 658; https://doi.org/10.3390/biom13040658 - 7 Apr 2023
Cited by 4 | Viewed by 4093
Abstract
Neovascular age-related macular degeneration (nvAMD) is characterized by choroidal neovascularization (CNV), which leads to retinal pigment epithelial (RPE) cell and photoreceptor degeneration and blindness if untreated. Since blood vessel growth is mediated by endothelial cell growth factors, including vascular endothelial growth factor (VEGF), [...] Read more.
Neovascular age-related macular degeneration (nvAMD) is characterized by choroidal neovascularization (CNV), which leads to retinal pigment epithelial (RPE) cell and photoreceptor degeneration and blindness if untreated. Since blood vessel growth is mediated by endothelial cell growth factors, including vascular endothelial growth factor (VEGF), treatment consists of repeated, often monthly, intravitreal injections of anti-angiogenic biopharmaceuticals. Frequent injections are costly and present logistic difficulties; therefore, our laboratories are developing a cell-based gene therapy based on autologous RPE cells transfected ex vivo with the pigment epithelium derived factor (PEDF), which is the most potent natural antagonist of VEGF. Gene delivery and long-term expression of the transgene are enabled by the use of the non-viral Sleeping Beauty (SB100X) transposon system that is introduced into the cells by electroporation. The transposase may have a cytotoxic effect and a low risk of remobilization of the transposon if supplied in the form of DNA. Here, we investigated the use of the SB100X transposase delivered as mRNA and showed that ARPE-19 cells as well as primary human RPE cells were successfully transfected with the Venus or the PEDF gene, followed by stable transgene expression. In human RPE cells, secretion of recombinant PEDF could be detected in cell culture up to one year. Non-viral ex vivo transfection using SB100X-mRNA in combination with electroporation increases the biosafety of our gene therapeutic approach to treat nvAMD while ensuring high transfection efficiency and long-term transgene expression in RPE cells. Full article
(This article belongs to the Special Issue New Discoveries in Retinal Cell Degeneration and Retinal Diseases)
Show Figures

Figure 1

16 pages, 8881 KiB  
Article
Early Subcellular Hepatocellular Alterations in Mice Post Hydrodynamic Transfection: An Explorative Study
by Mohd Yasser, Silvia Ribback, Katja Evert, Kirsten Utpatel, Katharina Annweiler, Matthias Evert, Frank Dombrowski and Diego F. Calvisi
Cancers 2023, 15(2), 328; https://doi.org/10.3390/cancers15020328 - 4 Jan 2023
Cited by 1 | Viewed by 4163
Abstract
Hydrodynamic transfection (HT) or hydrodynamic tail vein injection (HTVi) is among the leading technique that is used to deliver plasmid genes mainly into the liver of live mice or rats. The DNA constructs are composed of coupled plasmids, while one contains the gene [...] Read more.
Hydrodynamic transfection (HT) or hydrodynamic tail vein injection (HTVi) is among the leading technique that is used to deliver plasmid genes mainly into the liver of live mice or rats. The DNA constructs are composed of coupled plasmids, while one contains the gene of interest that stably integrate into the hepatocyte genome with help of the other consisting sleeping beauty transposase system. The rapid injection of a large volume of DNA-solution through the tail vein induces an acute cardiac congestion that refluxed into the liver, mainly in acinus zone 3, also found through our EM study. Although, HT mediated hydrodynamic force can permeabilizes the fenestrated sinusoidal endothelium of liver, but the mechanism of plasmid incorporation into the hepatocytes remains unclear. Therefore, in the present study, we have hydrodynamically injected 2 mL volume of empty plasmid (transposon vector) or saline solution (control) into the tail vein of anesthetized C57BL/6J/129Sv mice. Liver tissue was resected at different time points from two animal group conditions, i.e., one time point per animal (1, 5, 10–20, 60 min or 24 and 48 hrs after HT) or multiple time points per animal (0, 1, 2, 5, 10, 20 min) and quickly fixed with buffered 4% osmium tetroxide. The tissues fed with only saline solution was also resected and fixed in the similar way. EM evaluation from the liver ultrathin sections reveals that swiftly after 1 min, the hepatocytes near to the central venule in the acinus zone 3 shows cytoplasmic membrane-bound vesicles. Such vesicles increased in both numbers and size to vacuoles and precisely often found in the proximity to the nucleus. Further, EM affirm these vacuoles are also optically empty and do not contain any electron dense material. Although, some of the other hepatocytes reveals sign of cell damage including swollen mitochondria, dilated endoplasmic reticulum, Golgi apparatus and disrupted plasma membrane, but most of the hepatocytes appeared normal. The ultrastructural findings in the mice injected with empty vector or saline injected control mice were similar. Therefore, we have interpreted the vacuole formation as nonspecific endocytosis without specific interactions at the plasma membrane. Full article
(This article belongs to the Special Issue Gene Editing and Delivery for Cancer Therapy)
Show Figures

Figure 1

25 pages, 15851 KiB  
Article
Molecular and Functional Characterization of BDNF-Overexpressing Human Retinal Pigment Epithelial Cells Established by Sleeping Beauty Transposon-Mediated Gene Transfer
by Larissa Mattern, Katrin Otten, Csaba Miskey, Matthias Fuest, Zsuzsanna Izsvák, Zoltán Ivics, Peter Walter, Gabriele Thumann and Sandra Johnen
Int. J. Mol. Sci. 2022, 23(21), 12982; https://doi.org/10.3390/ijms232112982 - 26 Oct 2022
Cited by 9 | Viewed by 2985
Abstract
More and more patients suffer from multifactorial neurodegenerative diseases, such as age-related macular degeneration (AMD). However, their pathological mechanisms are still poorly understood, which complicates the development of effective therapies. To improve treatment of multifactorial diseases, cell-based gene therapy can be used to [...] Read more.
More and more patients suffer from multifactorial neurodegenerative diseases, such as age-related macular degeneration (AMD). However, their pathological mechanisms are still poorly understood, which complicates the development of effective therapies. To improve treatment of multifactorial diseases, cell-based gene therapy can be used to increase the expression of therapeutic factors. To date, there is no approved therapy for dry AMD, including late-stage geographic atrophy. We present a treatment option for dry AMD that transfers the brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial (RPE) cells by electroporation using the plasmid-based Sleeping Beauty (SB) transposon system. ARPE-19 cells and primary human RPE cells were co-transfected with two plasmids encoding the SB100X transposase and the transposon carrying a BDNF transcription cassette. We demonstrated efficient expression and secretion of BDNF in both RPE cell types, which were further increased in ARPE-19 cell cultures exposed to hydrogen peroxide. BDNF-transfected cells exhibited lower apoptosis rates and stimulated neurite outgrowth in human SH-SY5Y cells. This study is an important step in the development of a cell-based BDNF gene therapy that could be applied as an advanced therapy medicinal product to treat dry AMD or other degenerative retinal diseases. Full article
(This article belongs to the Special Issue Novel Insights in Retinal Diseases Pathophysiology and Therapies)
Show Figures

Figure 1

22 pages, 1110 KiB  
Review
Episomes and Transposases—Utilities to Maintain Transgene Expression from Nonviral Vectors
by Florian Kreppel and Claudia Hagedorn
Genes 2022, 13(10), 1872; https://doi.org/10.3390/genes13101872 - 16 Oct 2022
Cited by 4 | Viewed by 4761
Abstract
The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and [...] Read more.
The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and adverse immunological reactions. Nonviral vector systems have been extensively studied and refined during the last decades. Emerging knowledge of the epigenetic regulation of replication and spatial chromatin organisation, as well as new technologies, such as Crispr/Cas, were employed to enhance the performance of different nonviral vector systems. Thus, nonviral vectors are in focus and hold some promising perspectives for future applications in gene therapy. This review addresses three prominent nonviral vector systems: the Sleeping Beauty transposase, S/MAR-based episomes, and viral plasmid replicon-based EBV vectors. Exemplarily, we review different utilities, modifications, and new concepts that were pursued to overcome limitations regarding stable transgene expression and mitotic stability. New insights into the nuclear localisation of nonviral vector molecules and the potential consequences thereof are highlighted. Finally, we discuss the remaining limitations and provide an outlook on possible future developments in nonviral vector technology. Full article
(This article belongs to the Special Issue Advances in Non-viral Gene Transfer for Gene Therapy Applications)
Show Figures

Figure 1

22 pages, 5107 KiB  
Article
Targeted Transposition of Minicircle DNA Using Single-Chain Antibody Conjugated Cyclodextrin-Modified Poly (Propylene Imine) Nanocarriers
by Willi Jugel, Stefanie Tietze, Jennifer Daeg, Dietmar Appelhans, Felix Broghammer, Achim Aigner, Michael Karimov, Gabriele Schackert and Achim Temme
Cancers 2022, 14(8), 1925; https://doi.org/10.3390/cancers14081925 - 11 Apr 2022
Cited by 1 | Viewed by 3107
Abstract
Among non-viral vectors, cationic polymers, such as poly(propylene imine) (PPI), play a prominent role in nucleic acid delivery. However, limitations of polycationic polymer-based DNA delivery systems are (i) insufficient target specificity, (ii) unsatisfactory transgene expression, and (iii) undesired transfer of therapeutic DNA into [...] Read more.
Among non-viral vectors, cationic polymers, such as poly(propylene imine) (PPI), play a prominent role in nucleic acid delivery. However, limitations of polycationic polymer-based DNA delivery systems are (i) insufficient target specificity, (ii) unsatisfactory transgene expression, and (iii) undesired transfer of therapeutic DNA into non-target cells. We developed single-chain antibody fragment (scFv)-directed hybrid polyplexes for targeted gene therapy of prostate stem cell antigen (PSCA)-positive tumors. Besides mono-biotinylated PSCA-specific single-chain antibodies (scFv(AM1-P-BAP)) conjugated to neutravidin, the hybrid polyplexes comprise β-cyclodextrin-modified PPI as well as biotin/maltose-modified PPI as carriers for minicircle DNAs encoding for Sleeping Beauty transposase and a transposon encoding the gene of interest. The PSCA-specific hybrid polyplexes efficiently delivered a GFP gene in PSCA-positive tumor cells, whereas control hybrid polyplexes showed low gene transfer efficiency. In an experimental gene therapy approach, targeted transposition of a codon-optimized p53 into p53-deficient HCT116p53−/−/PSCA cells demonstrated decreased clonogenic survival when compared to mock controls. Noteworthily, p53 transposition in PTEN-deficient H4PSCA glioma cells caused nearly complete loss of clonogenic survival. These results demonstrate the feasibility of combining tumor-targeting hybrid polyplexes and Sleeping Beauty gene transposition, which, due to the modular design, can be extended to other target genes and tumor entities. Full article
(This article belongs to the Special Issue Cancer Smart Nanomedicine)
Show Figures

Figure 1

17 pages, 3729 KiB  
Review
Jumping Ahead with Sleeping Beauty: Mechanistic Insights into Cut-and-Paste Transposition
by Matthias T. Ochmann and Zoltán Ivics
Viruses 2021, 13(1), 76; https://doi.org/10.3390/v13010076 - 8 Jan 2021
Cited by 16 | Viewed by 6015
Abstract
Sleeping Beauty (SB) is a transposon system that has been widely used as a genetic engineering tool. Central to the development of any transposon as a research tool is the ability to integrate a foreign piece of DNA into the cellular genome. Driven [...] Read more.
Sleeping Beauty (SB) is a transposon system that has been widely used as a genetic engineering tool. Central to the development of any transposon as a research tool is the ability to integrate a foreign piece of DNA into the cellular genome. Driven by the need for efficient transposon-based gene vector systems, extensive studies have largely elucidated the molecular actors and actions taking place during SB transposition. Close transposon relatives and other recombination enzymes, including retroviral integrases, have served as useful models to infer functional information relevant to SB. Recently obtained structural data on the SB transposase enable a direct insight into the workings of this enzyme. These efforts cumulatively allowed the development of novel variants of SB that offer advanced possibilities for genetic engineering due to their hyperactivity, integration deficiency, or targeting capacity. However, many aspects of the process of transposition remain poorly understood and require further investigation. We anticipate that continued investigations into the structure–function relationships of SB transposition will enable the development of new generations of transposition-based vector systems, thereby facilitating the use of SB in preclinical studies and clinical trials. Full article
(This article belongs to the Special Issue Viral Integration)
Show Figures

Figure 1

10 pages, 1772 KiB  
Article
Development of a Mouse Model of Prostate Cancer Using the Sleeping Beauty Transposon and Electroporation
by Hyun-Ji Choi, Han-Byul Lee, Sunyoung Jung, Hyun-Kyu Park, Woori Jo, Sung-Min Cho, Woo-Jin Kim and Woo-Chan Son
Molecules 2018, 23(6), 1360; https://doi.org/10.3390/molecules23061360 - 5 Jun 2018
Cited by 5 | Viewed by 5213
Abstract
The Sleeping Beauty (SB) transposon system is non-viral and uses insertional mutagenesis, resulting in the permanent expression of transferred genes. Although the SB transposon is a useful method for establishing a mouse tumor model, there has been difficulty in using this method to [...] Read more.
The Sleeping Beauty (SB) transposon system is non-viral and uses insertional mutagenesis, resulting in the permanent expression of transferred genes. Although the SB transposon is a useful method for establishing a mouse tumor model, there has been difficulty in using this method to generate tumors in the prostate. In the present study, electroporation was used to enhance the transfection efficiency of the SB transposon. To generate tumors, three constructs (a c-Myc expression cassette, a HRAS (HRas proto-oncogene, GTPase) expression cassette and a shRNA against p53) contained within the SB transposon plasmids were directly injected into the prostate. Electroporation was conducted on the injection site after the injection of the DNA plasmid. Following the tumorigenesis, the tumors were monitored by animal PET imaging and identified by gross observation. After this, the tumors were characterized by using histological and immunohistochemical techniques. The expression of the targeted genes was analyzed by Real-Time qRT-PCR. All mice subjected to the injection were found to have prostate tumors, which was supported by PSA immunohistochemistry. To our knowledge, this is the first demonstration of tumor induction in the mouse prostate using the electroporation-enhanced SB transposon system in combination with c-Myc, HRAS and p53. This model serves as a valuable resource for the future development of SB-induced mouse models of cancer. Full article
(This article belongs to the Special Issue Gene Delivery)
Show Figures

Figure 1

19 pages, 751 KiB  
Article
Assessment of Fecundity and Germ Line Transmission in Two Transgenic Pig Lines Produced by Sleeping Beauty Transposition
by Wiebke Garrels, Stephanie Holler, Nicole Cleve, Heiner Niemann, Zoltan Ivics and Wilfried A. Kues
Genes 2012, 3(4), 615-633; https://doi.org/10.3390/genes3040615 - 12 Oct 2012
Cited by 14 | Viewed by 13358
Abstract
Recently, we described a simplified injection method for producing transgenic pigs using a non-autonomous Sleeping Beauty transposon system. The founder animals showed ubiquitous expression of the Venus fluorophore in almost all cell types. To assess, whether expression of the reporter fluorophore affects animal [...] Read more.
Recently, we described a simplified injection method for producing transgenic pigs using a non-autonomous Sleeping Beauty transposon system. The founder animals showed ubiquitous expression of the Venus fluorophore in almost all cell types. To assess, whether expression of the reporter fluorophore affects animal welfare or fecundity, we analyzed reproductive parameters of two founder boars, germ line transmission, and organ and cell specific transgene expression in animals of the F1 and F2 generation. Molecular analysis of ejaculated sperm cells suggested three monomeric integrations of the Venus transposon in both founders. To test germ line transmission of the three monomeric transposon integrations, wild-type sows were artificially inseminated. The offspring were nursed to sexual maturity and hemizygous lines were established. A clear segregation of the monomeric transposons following the Mendelian rules was observed in the F1 and F2 offspring. Apparently, almost all somatic cells, as well as oocytes and spermatozoa, expressed the Venus fluorophore at cell-type specific levels. No detrimental effects of Venus expression on animal health or fecundity were found. Importantly, all hemizygous lines expressed the fluorophore in comparable levels, and no case of transgene silencing or variegated expression was found after germ line transmission, suggesting that the insertions occurred at transcriptionally permissive loci. The results show that Sleeping Beauty transposase-catalyzed transposition is a promising approach for stable genetic modification of the pig genome. Full article
(This article belongs to the Special Issue Transgenic Technology: Benefits or Dangers?)
Show Figures

Graphical abstract

30 pages, 660 KiB  
Review
Viral Hybrid Vectors for Somatic Integration - Are They the Better Solution?
by Nadine Müther, Nadja Noske and Anja Ehrhardt
Viruses 2009, 1(3), 1295-1324; https://doi.org/10.3390/v1031295 - 15 Dec 2009
Cited by 16 | Viewed by 18230
Abstract
The turbulent history of clinical trials in viral gene therapy has taught us important lessons about vector design and safety issues. Much effort was spent on analyzing genotoxicity after somatic integration of therapeutic DNA into the host genome. Based on these findings major [...] Read more.
The turbulent history of clinical trials in viral gene therapy has taught us important lessons about vector design and safety issues. Much effort was spent on analyzing genotoxicity after somatic integration of therapeutic DNA into the host genome. Based on these findings major improvements in vector design including the development of viral hybrid vectors for somatic integration have been achieved. This review provides a state-of-the-art overview of available hybrid vectors utilizing viruses for high transduction efficiencies in concert with various integration machineries for random and targeted integration patterns. It discusses advantages but also limitations of each vector system. Full article
(This article belongs to the Special Issue Novel Viral Vector Systems for Gene Therapy)
Show Figures

Figure 1

14 pages, 771 KiB  
Review
The Sleeping Beauty Transposable Element: Evolution, Regulation and Genetic Applications
by Zoltán Ivics, Christopher D. Kaufman, Hatem Zayed, Csaba Miskey, Oliver Walisko and Zsuzsanna Izsvák
Curr. Issues Mol. Biol. 2004, 6(1), 43-56; https://doi.org/10.21775/cimb.006.043 - 25 Nov 2003
Cited by 1 | Viewed by 1044
Abstract
Members of the Tc1/mariner superfamily of transposable elements isolated from vertebrate species are inactive due to the accumulation of mutations. A representative of a subfamily of fish elements estimated to be last active >10 million years ago has been reconstructed, and named [...] Read more.
Members of the Tc1/mariner superfamily of transposable elements isolated from vertebrate species are inactive due to the accumulation of mutations. A representative of a subfamily of fish elements estimated to be last active >10 million years ago has been reconstructed, and named Sleeping Beauty (SB). This element opened up new avenues for studies on DNA transposition in vertebrates, and for the development of transposon tools for genetic manipulation in important model species and in humans. Multiple transposase binding sites within the terminal inverted repeats, a transpositional enhancer sequence, unequal affinity of the transposase to the binding sites and the activity of the cellular HMGB1 protein all contribute to a highly regulated assembly of SB synaptic complexes, which is likely a requirement for the subsequent catalytic steps. Host proteins involved in double-strand DNA break repair are limiting factors of SB transposition in mammalian cells, underscoring evolutionary, structural and functional links between DNA transposition, retroviral integration and V(D)J recombination. SB catalyzes efficient cut-and-paste transposition in a wide range of vertebrate cells in tissue culture, and in somatic tissues as well as the germline of the mouse and zebrafish in vivo, indicating its usefulness as a vector for transgenesis and insertional mutagenesis. Full article
Back to TopTop