Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Silybum marianum (L.) Gaertn

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1531 KiB  
Article
Evaluation of the Biological Properties and Antibacterial Activities of the Natural Food Supplement “Epavin” for Liver Detoxification and Protection
by Alexia Barbarossa, Maria Pia Argentieri, Maria Valeria Diella, Anita Caforio, Antonio Carrieri, Filomena Corbo, Antonio Rosato and Alessia Carocci
Foods 2025, 14(15), 2600; https://doi.org/10.3390/foods14152600 - 24 Jul 2025
Viewed by 403
Abstract
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients [...] Read more.
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients with advanced liver dysfunction. The global rise in these conditions underscores the need for effective interventions. Natural products have attracted attention for their potential to support liver health, particularly through synergistic combinations of plant extracts. Epavin, a dietary supplement from Erbenobili S.r.l., formulated with plant extracts like Taraxacum officinale (L.), Silybum marianum (L.) Gaertn., and Cynara scolymus (L.), known for their liver-supporting properties, has been proposed as adjuvant for liver functions. The aim of this work was to evaluate of Epavin’s antioxidant, anti-inflammatory, and protective effects against heavy metal-induced toxicity. In addition, the antibacterial effect of Epavin against a panel of bacterial strains responsible for infections associated with liver injuries has been evaluated. Methods: The protection against oxidative stress induced by H2O2 was evaluated in HepG2 and BALB/3T3 cells using the dichlorofluorescein diacetate (DCFH-DA) assay. Its anti-inflammatory activity was investigated by measuring the reduction in nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages using the Griess assay. Additionally, the cytoprotecting of Epavin against heavy metal-induced toxicity and oxidative stress were evaluated in HepG2 cells using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) and DCFH-DA assays. The antibacterial activity of Epavin was assessed by determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against Gram-positive (Enterococcus faecalis ATCC 29212, and BS, Staphylococcus aureus 25923, 29213, 43300, and BS) and Gram-negative (Escherichia coli 25922, and BS, Klebsiella pneumoniae 13883, 70063, and BS) bacterial strains using the microdilution method in broth, following the Clinical and Laboratory Standards Institute’s (CLSI) guidelines. Results: Epavin effectively reduced oxidative stress in HepG2 and BALB/3T3 cells and decreased NO production in LPS-stimulated RAW 264.7 macrophages. Moreover, Epavin demonstrated a protective effect against heavy metal-induced toxicity and oxidative damage in HepG2 cells. Finally, it exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacterial strains, with MIC values ranging from 1.5 to 6.0 mg/mL. Conclusions: The interesting results obtained suggest that Epavin may serve as a valuable natural adjuvant for liver health by enhancing detoxification processes, reducing inflammation, and exerting antibacterial effects that could be beneficial in the context of liver-associated infections. Full article
Show Figures

Figure 1

21 pages, 1602 KiB  
Review
A Comprehensive Review on the Antibacterial, Antifungal, Antiviral, and Antiparasitic Potential of Silybin
by José Lima Pereira-Filho, Amanda Graziela Gonçalves Mendes, Carmem Duarte Lima Campos, Israel Viegas Moreira, Cinara Regina Aragão Vieira Monteiro, Suzany Hellen da Silva Soczek, Elizabeth Soares Fernandes, Rafael Cardoso Carvalho and Valério Monteiro-Neto
Antibiotics 2024, 13(11), 1091; https://doi.org/10.3390/antibiotics13111091 - 15 Nov 2024
Viewed by 2690
Abstract
Silybin, a flavonolignan extracted from the seeds of the plant species Silybum marianum (L.) Gaertn., has a variety of pharmacological activities, including antimicrobial activity against several microorganisms of clinical interest. This review analyzes the existing studies on silybin’s antimicrobial activity and possible mechanisms [...] Read more.
Silybin, a flavonolignan extracted from the seeds of the plant species Silybum marianum (L.) Gaertn., has a variety of pharmacological activities, including antimicrobial activity against several microorganisms of clinical interest. This review analyzes the existing studies on silybin’s antimicrobial activity and possible mechanisms of action. Silybin has been shown to inhibit the growth of Gram-positive and Gram-negative bacteria, as well as some fungi, viruses, and protozoa. In general, possible mechanisms of antimicrobial action include the inhibition of efflux pumps, prevention of biofilm formation, reduction of the expression of virulence factors, induction of apoptosis-like effects, and plasma membrane damage, as well as the inhibition of nucleic acid and protein synthesis. Silybin has been shown to have synergistic effects when combined with conventional antibiotics against both drug-sensitive and drug-resistant microorganisms. However, the low bioavailability observed for this flavonolignan has been a challenge to its clinical use. In this context, nanotechnology has been used to increase silybin’s bioavailability while enhancing its antimicrobial activity. Furthermore, certain structural modifications have been able to enhance its antimicrobial activity in comparison to that of the natural molecule. Overall, this review provides insights into the scientific understanding of the mechanism of action of silybin and its desired properties for the effective treatment of infections. Full article
Show Figures

Figure 1

13 pages, 3023 KiB  
Article
Influence of Crop Residue Management on Maize Production Potential
by Joanna Korczyk-Szabó, Milan Macák, Wacław Jarecki, Monika Sterczyńska, Daniel Jug, Katarzyna Pużyńska, Ľubomíra Hromadová and Miroslav Habán
Agronomy 2024, 14(11), 2610; https://doi.org/10.3390/agronomy14112610 - 5 Nov 2024
Cited by 1 | Viewed by 2081
Abstract
Residue management at the farm level is essential for ensuring sustainable agricultural productivity. This field experiment, initiated in 2005, provides maize data from 2016 to 2018. This study evaluates the impact of crop residue management and fertilization on maize yield and yield components. [...] Read more.
Residue management at the farm level is essential for ensuring sustainable agricultural productivity. This field experiment, initiated in 2005, provides maize data from 2016 to 2018. This study evaluates the impact of crop residue management and fertilization on maize yield and yield components. Maize was grown in a crop rotation sequence consisting of field pea (Pisum sativum L.), durum wheat (Triticum durum Desf.), milk thistle (Silybum marianum (L.) Gaertn.), and maize (Zea mays L.). The measures studied include aboveground biomass removal (K), aboveground biomass incorporation (R), mineral fertilizer application (F), and their combination (RF). The results indicate that R and RF significantly improve yield parameters, such as kernel number per ear (KNE), thousand seed weight (TSW), stalk yield, and harvest index (HI), compared to control (K) or aboveground biomass incorporation alone (R). Grain yield varied across the years, with significant increases being observed for the fertilizer treatments, particularly when combined with straw or stalk incorporation. A nominal increase in grain yield of 1.43 t ha−1 for the F treatment and 1.86 t ha−1 for the RF treatment represents an increase of 39% to 51% compared to K and R. Strong positive correlations were observed between grain yield and several factors, including ears per hectare (0.61), KNE (0.94), TSW (0.61), and HI (0.85). These findings underscore the role of crop residue management and promoting sustainable crop production. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

12 pages, 5617 KiB  
Article
Extract of Silybum marianum (L.) Gaertn Leaves as a Novel Green Corrosion Inhibitor for Carbon Steel in Acidic Solution
by Yubin Wang, Lingjie Li, Jinbei He and Baojiang Sun
Materials 2024, 17(19), 4794; https://doi.org/10.3390/ma17194794 - 29 Sep 2024
Cited by 1 | Viewed by 862
Abstract
In this work, leaves of Silybum marianum (L.) Gaertn were extracted by a one-step extraction method using ethanol as a solvent, and the Silybum marianum (L.) Gaertn extract (SMGE) was firstly employed as a green corrosion inhibitor for carbon steel in 0.5 mol/L [...] Read more.
In this work, leaves of Silybum marianum (L.) Gaertn were extracted by a one-step extraction method using ethanol as a solvent, and the Silybum marianum (L.) Gaertn extract (SMGE) was firstly employed as a green corrosion inhibitor for carbon steel in 0.5 mol/L H2SO4. The corrosion inhibition performance was studied using weight loss and electrochemical methods, and the anti-corrosion mechanism of SMGE is further analyzed through some surface characterizations and theoretical calculations. The results indicate that SMGE can act as a mixed-type corrosion inhibitor and possess superior corrosion inhibition performance for carbon steel in H2SO4 solution, and the optimum corrosion inhibition efficiency reached 93.06% at 800 ppm SMGE combined with 60 ppm KI. The corrosion inhibition efficiency increased with the rising inhibitor concentration. Surface characterizations illustrated that the inhibitor could physico-chemically adsorb on a metal surface, forming a hydrophobic, protective film. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

20 pages, 2792 KiB  
Article
Residues from the Oil Pressing Process as a Substrate for the Production of Alternative Biochar Materials
by Bogdan Saletnik, Radosław Czarnota, Mateusz Maczuga, Aneta Saletnik, Marcin Bajcar, Grzegorz Zaguła and Czesław Puchalski
Appl. Sci. 2024, 14(17), 8028; https://doi.org/10.3390/app14178028 - 8 Sep 2024
Viewed by 1563
Abstract
The purpose of this study was to evaluate the feasibility of using residues from cooking oil production to produce alternative biochar fuels along with optimizing the pyrolysis process. The work consisted of carrying out the pyrolysis process at varying temperatures and holding times [...] Read more.
The purpose of this study was to evaluate the feasibility of using residues from cooking oil production to produce alternative biochar fuels along with optimizing the pyrolysis process. The work consisted of carrying out the pyrolysis process at varying temperatures and holding times at the final temperature, and then evaluating the energy potential of the materials studied. Taking into account aspects of environmental emissions, the content of selected oxides in the flue gases generated during the combustion of cakes and the biochar obtained from them was evaluated. Plant biomass derived from a variety of oilseeds, i.e., fennel flower (Nigella sativa L.), rapeseed (Brassica napus L. var. Napus), flax (Linum usitatissimum L.), evening primrose (Oenothera biennis L.), milk thistle (Silybum marianum L. Gaertn.) and hemp (Cannabis sativa L.), was used to produce biochar. The experimental data have shown that the obtained biochar can have a calorific value of nearly 27 MJ kg−1. The use of pyrolysis allowed for a maximum increase in the calorific value of nearly 41% compared to non-thermally processed cakes and a several-fold decrease in carbon monoxide, nitrogen oxides and sulfur dioxide emissions. According to these results, it can be concluded that the pyrolysis process can be an attractive method for using residues from the production of various cooking oils to produce alternative biofuels, developing the potential of the circular economy. Full article
Show Figures

Figure 1

22 pages, 976 KiB  
Review
Silymarin: A Natural Compound for Obesity Management
by Jessica Alves de Freitas, Aline Boveto Santamarina, José Pinhata Otoch and Ana Flávia Marçal Pessoa
Obesities 2024, 4(3), 292-313; https://doi.org/10.3390/obesities4030024 - 9 Aug 2024
Cited by 4 | Viewed by 7434
Abstract
Silybum marianum (L.) Gaertn, commonly known as milk thistle, is an herbal medicine rich in silymarin, a bioflavonoid complex. Historically, silymarin was used for treating liver diseases, but recent studies highlight silymarin’s potential for obesity management. This narrative review aims to provide an [...] Read more.
Silybum marianum (L.) Gaertn, commonly known as milk thistle, is an herbal medicine rich in silymarin, a bioflavonoid complex. Historically, silymarin was used for treating liver diseases, but recent studies highlight silymarin’s potential for obesity management. This narrative review aims to provide an in-depth examination of the existing knowledge of Silybum marianum (L.) and its secondary compounds concerning obesity and associated comorbidities, summarizing data from in vitro, preclinical, and clinical studies. Obesity is a significant public health issue, exacerbated during the COVID-19 pandemic, as a major risk factor for mortality. It contributes to metabolic dysfunction, including oxidative stress, metainflammation, cardiovascular diseases, and type 2 diabetes development. Silymarin has demonstrated benefits on insulin signaling and lipid metabolism, as well as antioxidant and anti-inflammatory properties at the molecular level. Innovative studies also suggest silymarin’s potential as a prebiotic, positively influencing gut microbiota composition, a key factor affected by obesity. These promising findings support the potential anti-obesity action of silymarin in clinical practice. Looking forward, using silymarin as an innovative complementary therapy could offer substantial benefits for natural health promotion and obesity management. Nevertheless, further research into optimal doses and cellular mechanisms is still needed. Full article
(This article belongs to the Special Issue Obesity and Its Comorbidities: Prevention and Therapy)
Show Figures

Figure 1

17 pages, 10731 KiB  
Article
Anti-Tumor Activity and Mechanism of Silibinin Based on Network Pharmacology and Experimental Verification
by Peihai Li, Dexu Wang, Xueliang Yang, Changyu Liu, Xiaobin Li, Xuanming Zhang, Kechun Liu, Yun Zhang, Mengqi Zhang, Changyun Wang and Rongchun Wang
Molecules 2024, 29(8), 1901; https://doi.org/10.3390/molecules29081901 - 22 Apr 2024
Cited by 8 | Viewed by 2695
Abstract
Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess [...] Read more.
Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin. Full article
(This article belongs to the Special Issue Medicinal Value of Natural Bioactive Compounds and Plant Extracts II)
Show Figures

Figure 1

23 pages, 700 KiB  
Review
Influence of Abiotic and Biotic Elicitors on Organogenesis, Biomass Accumulation, and Production of Key Secondary Metabolites in Asteraceae Plants
by Maria Petrova, Kamelia Miladinova-Georgieva and Maria Geneva
Int. J. Mol. Sci. 2024, 25(8), 4197; https://doi.org/10.3390/ijms25084197 - 10 Apr 2024
Cited by 19 | Viewed by 3588
Abstract
The medicinal plants of the Asteraceae family are a valuable source of bioactive secondary metabolites, including polyphenols, phenolic acids, flavonoids, acetylenes, sesquiterpene lactones, triterpenes, etc. Under stressful conditions, the plants develop these secondary substances to carry out physiological tasks in plant cells. Secondary [...] Read more.
The medicinal plants of the Asteraceae family are a valuable source of bioactive secondary metabolites, including polyphenols, phenolic acids, flavonoids, acetylenes, sesquiterpene lactones, triterpenes, etc. Under stressful conditions, the plants develop these secondary substances to carry out physiological tasks in plant cells. Secondary Asteraceae metabolites that are of the greatest interest to consumers are artemisinin (an anti-malarial drug from Artemisia annua L.—sweet wormwood), steviol glycosides (an intense sweetener from Stevia rebaudiana Bert.—stevia), caffeic acid derivatives (with a broad spectrum of biological activities synthesized from Echinacea purpurea (L.) Moench—echinacea and Cichorium intybus L.—chicory), helenalin and dihydrohelenalin (anti-inflammatory drug from Arnica montana L.—mountain arnica), parthenolide (“medieval aspirin” from Tanacetum parthenium (L.) Sch.Bip.—feverfew), and silymarin (liver-protective medicine from Silybum marianum (L.) Gaertn.—milk thistle). The necessity to enhance secondary metabolite synthesis has arisen due to the widespread use of these metabolites in numerous industrial sectors. Elicitation is an effective strategy to enhance the production of secondary metabolites in in vitro cultures. Suitable technological platforms for the production of phytochemicals are cell suspension, shoots, and hairy root cultures. Numerous reports describe an enhanced accumulation of desired metabolites after the application of various abiotic and biotic elicitors. Elicitors induce transcriptional changes in biosynthetic genes, leading to the metabolic reprogramming of secondary metabolism and clarifying the mechanism of the synthesis of bioactive compounds. This review summarizes biotechnological investigations concerning the biosynthesis of medicinally essential metabolites in plants of the Asteraceae family after various elicitor treatments. Full article
(This article belongs to the Special Issue Molecular and Metabolic Regulation of Plant Secondary Metabolism)
Show Figures

Figure 1

11 pages, 2161 KiB  
Article
Allelopathic Activity of Three Wild Mediterranean Asteraceae: Silybum marianum, Cynara cardunculus var. sylvestris, Galactites tomentosus
by Mirko La Iacona, Sara Lombardo, Giovanni Mauromicale, Aurelio Scavo and Gaetano Pandino
Agronomy 2024, 14(3), 575; https://doi.org/10.3390/agronomy14030575 - 13 Mar 2024
Cited by 6 | Viewed by 1987
Abstract
The manipulation of allelopathic mechanisms, such as the isolation of plant allelochemicals for bioherbicide production, is currently providing a new tool for weed management methods of reducing or potentially eliminating the use of synthetic herbicides. In Mediterranean agroecosystems, wild Asteraceae are the prevalent [...] Read more.
The manipulation of allelopathic mechanisms, such as the isolation of plant allelochemicals for bioherbicide production, is currently providing a new tool for weed management methods of reducing or potentially eliminating the use of synthetic herbicides. In Mediterranean agroecosystems, wild Asteraceae are the prevalent taxa, likely due to their allelopathic activity. Hence, the objective of this study was to evaluate the allelopathic effects of the aqueous extracts obtained from milk thistle [Silybum marianum (L.) Gaertn], wild cardoon (Cynara cardunculus L. var. sylvestris) and purple milk thistle (Galactites tomentosus Moench) on the seed germination, mean germination time, and seedling growth of three target weeds: Portulaca oleracea L., Taraxacum officinale (Weber) ex Wiggers and Anagallis arvensis L. The total polyphenol (TP), flavonoid (TF), flavonol (TFL), and phenolic acid (TPA) content in the aqueous extracts was also evaluated. Overall, the allelopathic effects were species-dependent and root length was the most affected parameter. All extracts completely inhibited root development in P. oleracea. Averaged over target weeds, C. cardunculus extract had the greatest allelopathic activity, followed by G. tomentosus and by S. marianum. In particular, C. cardunculus reduced seed germination by over 50% and increased the mean germination time by 154%, likely due to the highest TP (13.2 g kg−1 DM) and TPA (11.4 g kg−1 DM) content, compared to the other Asteraceae species. These results provide evidence of the phytotoxic activity of the three wild Asteraceae members and suggest their possible future exploitation as potential bioherbicides for sustainable weed management. Full article
(This article belongs to the Special Issue Free from Herbicides: Ecological Weed Control)
Show Figures

Figure 1

15 pages, 8539 KiB  
Article
The Main Medicinal Plants in Arid Regions of Uzbekistan and Their Traditional Use in Folk Medicine
by Ozodbek S. Abduraimov, Wenjun Li, Habibullo F. Shomurodov and Ying Feng
Plants 2023, 12(16), 2950; https://doi.org/10.3390/plants12162950 - 15 Aug 2023
Cited by 9 | Viewed by 5147
Abstract
Seventy percent of the territory of Uzbekistan consists of arid regions. This situation is considered very favorable for plants adapted to a desert climate. Medicinal plants distributed in the arid regions of Uzbekistan have not been studied much. Medicinal plants are considered inexpensive, [...] Read more.
Seventy percent of the territory of Uzbekistan consists of arid regions. This situation is considered very favorable for plants adapted to a desert climate. Medicinal plants distributed in the arid regions of Uzbekistan have not been studied much. Medicinal plants are considered inexpensive, yet are vital for the lives of local residents. They play a very important role in the traditional healing of ailments. To determine the current state of medicinal plants and enhance their subsequent protection and sustainable use, it is necessary to obtain annual information on the state of their distribution, their population size, and the impact of negative factors on their populations. Based on our field studies, which were conducted during the period from 2012 to 2022 in the arid regions of Uzbekistan, we updated the checklists of the main medicinal plants used in these regions. A total of 529 medicinal species belonging to 70 families and 269 genera were identified in the study region. Several species, including Peganum harmala L., Capparis spinosa L., Ferula foetida (Bunge) Regel, Glycyrrhiza glabra L., Alhagi pseudalhagi (M. Bieb.) Desv. ex Wangerin, Lagochilus inebrians Bunge, Xanthium strumarium L., Silybum marianum (L.) Gaertn., Onopordum acanthium L., Ziziphora tenuior L., and Cichorium intybus L., are spread over large areas and have been used regularly by the locals since ancient times. These species are common in saline and degraded soils in arid regions of Uzbekistan. Semi-structured interviews were conducted with tabibs (traditional doctors), elders, herders, and residents with experience in traditional healing using medicinal plants. The medicinal value of most plants was based on the interviews with representatives of the local population, which were useful for understanding traditional healing skills and customer service skills. Full article
(This article belongs to the Special Issue Mapping Asia Plants)
Show Figures

Figure 1

11 pages, 278 KiB  
Article
Bioactive Substances and Microbiological Quality of Milk Thistle Fruits from Organic and Conventional Farming
by Katarzyna Sadowska, Jadwiga Andrzejewska, Anna Ligocka, Joanna Korczyk-Szabo and Miroslav Haban
Appl. Sci. 2023, 13(14), 8536; https://doi.org/10.3390/app13148536 - 24 Jul 2023
Cited by 3 | Viewed by 2155
Abstract
The agricultural policy of the European Union is currently focused on increasing the area of organic farming. Medicinal plants, including milk thistle (Silybum marianum [L.] Gaertn.), are particularly suitable for this type of cultivation. The aim of this study was to compare [...] Read more.
The agricultural policy of the European Union is currently focused on increasing the area of organic farming. Medicinal plants, including milk thistle (Silybum marianum [L.] Gaertn.), are particularly suitable for this type of cultivation. The aim of this study was to compare milk thistle fruits from organic and conventional farming in terms of the content of silymarin and individual flavonolignans, oil content, microbiological purity, as well as antimicrobial activity of the silymarin extract, mainly in relation to microorganisms responsible for skin infections. The raw material of Silybi mariani fructus obtained from organic farming did not differ in terms of silymarin and oil content compared to the raw material from conventional cultivation. However, it differed in the composition of silymarin and the level of microbiological contamination. Raw material from organic farming was mostly characterized by a higher proportion of the sum of silydianin and silychristin in the silymarin complex than the sum of silybinin A and silybinin B. In the samples from conventional cultivation, only genotypes with a predominance of silybinins were present. Although the total number of microorganisms (TAMC) and yeasts and molds (TYMC) on fruit from organic farming were several times higher than on fruit from conventional farming, it was still within the standards set for food products. All raw materials were free of Escherichia coli, Salmonella spp. and Listeria monocytogenes. In addition, it was shown that the silymarin extract from organic farming was generally characterized by greater antimicrobial activity, especially in relation to Staphylococcus aureus, which is resistant and troublesome in skin infections. Full article
(This article belongs to the Special Issue Potential Health Benefits of Fruits and Vegetables III)
14 pages, 3064 KiB  
Article
A Genomic Evaluation of Six Selected Inbred Lines of the Naturalized Plants of Milk Thistle (Silybum marianum L. Gaertn.) in Korea
by Jeehyoung Shim, Su Young Hong, Jae-Hyuk Han, Yeisoo Yu, Eunae Yoo, Jungsook Sung, Joong Hyoun Chin and O New Lee
Plants 2023, 12(14), 2702; https://doi.org/10.3390/plants12142702 - 20 Jul 2023
Cited by 7 | Viewed by 2529
Abstract
Milk thistle (Silybum marianum) belongs to the Asteraceae family and is a medicinal plant native to the Mediterranean Basin. Silymarin in achene is a widely used herbal product for chronic liver disease. There is growing interest in natural medicine using milk [...] Read more.
Milk thistle (Silybum marianum) belongs to the Asteraceae family and is a medicinal plant native to the Mediterranean Basin. Silymarin in achene is a widely used herbal product for chronic liver disease. There is growing interest in natural medicine using milk thistle in Korea, but the raw material completely relies on imports. Despite its economic importance, phenotypic evaluations of native resources of milk thistle in Korea have not been carried out. In addition, genomic research and molecular marker development are very limited in milk thistle. In this study, we evaluated 220 milk thistle resources consisting of 172 accessions collected from the domestic market, and 48 accessions isolated from 6 accessions distributed by the National Agrobiodiversity Center in Korea. Six plant characteristics (height, seed weight, number of flowers, seed weight per flower, spine length, and color at harvest) were measured, and six samples (M01–M06) were selected to represent the genetic diversity of the population for genomic research. To develop PCR-based and co-dominant insertion/deletion (InDel) markers, we performed genome-wide InDel detection by comparing the whole-genome resequencing data of the six selected accessions with the reference genome sequence (GCA_001541825). As a result, 177 InDel markers with high distinguishability and reproducibility were selected from the 30,845 InDel variants. Unknowingly imported alien plant resources could easily be genetically mixed, and jeopardized seed purity can cause continuous difficulties in the development of high value-added agricultural platforms utilizing natural products. The selected plant materials and 177 validated InDel markers developed via whole-genome resequencing analysis could be valuable resources for breeding, conservation, and ecological studies of natives to Korea, along with acceleration of Silybum marianum industrialization. Full article
(This article belongs to the Special Issue Trends and Prospects of Genetic and Molecular Research in Plant)
Show Figures

Figure 1

18 pages, 1756 KiB  
Review
Detecting and Profiling of Milk Thistle Metabolites in Food Supplements: A Safety-Oriented Approach by Advanced Analytics
by Ancuța Cristina Raclariu-Manolică and Carmen Socaciu
Metabolites 2023, 13(3), 440; https://doi.org/10.3390/metabo13030440 - 17 Mar 2023
Cited by 8 | Viewed by 4761
Abstract
Milk thistle (Silybum marianum (L.) Gaertn.) is among the top-selling botanicals used as a supportive treatment for liver diseases. Silymarin, a mixture of unique flavonolignan metabolites, is the main bioactive component of milk thistle. The biological activities of silymarin have been well [...] Read more.
Milk thistle (Silybum marianum (L.) Gaertn.) is among the top-selling botanicals used as a supportive treatment for liver diseases. Silymarin, a mixture of unique flavonolignan metabolites, is the main bioactive component of milk thistle. The biological activities of silymarin have been well described in the literature, and its use is considered safe and well-tolerated in appropriate doses. However, commercial preparations do not always contain the recommended concentrations of silymarin, failing to provide the expected therapeutic effect. While the poor quality of raw material may explain the low concentrations of silymarin, its deliberate removal is suspected to be an adulteration. Toxic contaminants and foreign matters were also detected in milk thistle preparations, raising serious health concerns. Standard methods for determination of silymarin components include thin-layer chromatography (TLC), high-performance thin-layer chromatography (HPTLC), and high-performance liquid chromatography (HPLC) with various detectors, but nuclear magnetic resonance (NMR) and ultra-high-performance liquid chromatography (UHPLC) have also been applied. This review surveys the extraction techniques of main milk thistle metabolites and the quality, efficacy, and safety of the derived food supplements. Advanced analytical authentication approaches are discussed with a focus on DNA barcoding and metabarcoding to complement orthogonal chemical characterization and fingerprinting of herbal products. Full article
(This article belongs to the Special Issue Plant, Food and Nutritional Metabolomics)
Show Figures

Figure 1

17 pages, 3467 KiB  
Article
Seed Germination of Three Milk Thistle (Silybum marianum (L.) Gaertn.) Populations of Greek Origin: Temperature, Duration, and Storage Conditions Effects
by Vasiliki Liava, Georgia Ntatsi and Anestis Karkanis
Plants 2023, 12(5), 1025; https://doi.org/10.3390/plants12051025 - 24 Feb 2023
Cited by 7 | Viewed by 2996
Abstract
Milk thistle besides being a highly competitive weed is cultivated as a medicinal plant, and the seeds of which have been clinically utilized in several disorders caused in liver. The present study aims to evaluate the effect of duration and storage conditions, population, [...] Read more.
Milk thistle besides being a highly competitive weed is cultivated as a medicinal plant, and the seeds of which have been clinically utilized in several disorders caused in liver. The present study aims to evaluate the effect of duration and storage conditions, population, and temperature on seed germination. The experiment was conducted in Petri dishes with three replications and three factors: (a) wild populations of milk thistle (Palaionterveno, Mesopotamia, and Spata) originating from Greece, (b) duration and storage conditions (5 months at room temperature, 17 months at room temperature, and 29 months in the freezer at −18 °C), and (c) temperature (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, and 30 °C). All three factors significantly affected germination percentage (GP), mean germination time (MGT), germination index (GI), radicle length (RL), and hypocotyl length (HL) and significant interactions among the treatments were noted. In specific, no seed germination was recorded at 5 °C, while the populations showed higher GP and GI at 20 °C and 25 °C after 5 months of storage. Prolonged storage negatively affected seed germination although, cold storage mitigated this effect. Moreover, higher temperatures reduced MGT and increased RL and HL with the populations reacting differently in storage and temperature regimes. The results of this study should be taken into consideration when proposing the appropriate sowing date and storage conditions of the seeds used as propagation material for crop establishment. Moreover, the effects of low temperatures such as 5 °C or 10 °C on seed germination as well as the high decline rate in germination percentage over time could be utilized in the design of integrated weed management systems thereby indicating the importance of the sowing time and the suitable crop rotation system to weed control. Full article
(This article belongs to the Collection Feature Papers in Plant Development and Morphogenesis)
Show Figures

Figure 1

19 pages, 531 KiB  
Article
Comparative Analysis of Phytochemicals and Antioxidant Properties of Borage Oil (Borago officinalis L.) and Milk Thistle (Silybum marianum Gaertn)
by Magdalena Kachel, Marta Krajewska, Małgorzata Stryjecka, Lidia Ślusarczyk, Arkadiusz Matwijczuk, Stanisław Rudy and Marek Domin
Appl. Sci. 2023, 13(4), 2560; https://doi.org/10.3390/app13042560 - 16 Feb 2023
Cited by 5 | Viewed by 3508
Abstract
There is currently a growing interest in oils characterised by specific medicinal, cosmetic, or dietary properties. For this reason, the seeds of two plants, milk thistle (Silybum marianum Gaertn) and borage (Borago officinalis L.), were studied by subjecting them to the [...] Read more.
There is currently a growing interest in oils characterised by specific medicinal, cosmetic, or dietary properties. For this reason, the seeds of two plants, milk thistle (Silybum marianum Gaertn) and borage (Borago officinalis L.), were studied by subjecting them to the process of cold pressing. The extracted oils were then examined in terms of their chemical composition and biological activity, and qualitatively analysed with the use of FTIR spectroscopy. The oils contained linoleic and octadecenoic acids in amounts of 47.84%, 35.31% (milk thistle oil) and 35.43%, 25.18% (borage oil). They were characterised by low water content, roughly 0.088% for thistle and 0.075% for borage, and simultaneously relatively high phosphorus content, reaching, respectively, 47.7 and 33.1 mg·kg−1. The mean peroxide value was 4.22 for milk thistle and 2.83 mmolO2·kg−1 for borage, and the acid number was 5.17 and 3.9 mgKOH·g−1, respectively. FTIR spectroscopy was used to conduct a qualitative analysis, which revealed slight discrepancies in intensity at 3005 cm−1, which confirmed differences in the content of fatty acids and oil pigments between the oils. The obtained results provided information on the applicability of the studied seeds and oils obtained therefrom as basic components of pharmaceutical and cosmetic products with potential health benefits. Full article
Show Figures

Figure 1

Back to TopTop