Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = SiO2-based nanosuspension

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 23782 KB  
Article
Microfluidic Study of the Effect of Nanosuspensions on Enhanced Oil Recovery
by Maxim I. Pryazhnikov, Andrey V. Minakov, Andrey I. Pryazhnikov, Ivan A. Denisov and Anton S. Yakimov
Nanomaterials 2022, 12(3), 520; https://doi.org/10.3390/nano12030520 - 2 Feb 2022
Cited by 23 | Viewed by 3589
Abstract
The essential advantages of microfluidic studies are the excellent visualization of the processes of oil displacement from the porous medium model, simple cleaning, and the possibility of the repeated use of the microfluidic chip. The present article deals with the process of oil [...] Read more.
The essential advantages of microfluidic studies are the excellent visualization of the processes of oil displacement from the porous medium model, simple cleaning, and the possibility of the repeated use of the microfluidic chip. The present article deals with the process of oil displacement by suspension flooding using a microfluidic chip, simulating a porous medium, and the suspensions of silicon dioxide nanoparticles (22 nm). The mass concentration of nanoparticles in suspensions ranged from 0.1 to 2 wt%. Five mass concentrations (0.125 wt%, 0.25 wt%, 0.5 wt%, 1 wt% and 2 wt%) were considered. The article presents the experimental photographs of the oil displacement process by water and SiO2 suspension. It is shown that, with the increasing concentration of nanoparticles, the oil recovery factor increases. A significant effect is observed at 0.5 wt% concentration of nanoparticles. It is shown that the increase in oil recovery during flooding by SiO2 suspension with the maximum concentration was 16%. Full article
Show Figures

Figure 1

18 pages, 130509 KB  
Article
Effect of Initial Water Saturation on Oil Displacement Efficiency by Nanosuspensions
by Dmitriy Guzei, Vladimir Zhigarev, Valery Rudyak, Sofia Ivanova and Andrey Minakov
Fluids 2022, 7(2), 59; https://doi.org/10.3390/fluids7020059 - 31 Jan 2022
Cited by 6 | Viewed by 3384
Abstract
This article deals with the study of the initial water saturation effect of a porous medium on the oil recovery factor using a water-based nanosuspension. The initial water saturation of the porous medium in the computations varied within the range from 0 to [...] Read more.
This article deals with the study of the initial water saturation effect of a porous medium on the oil recovery factor using a water-based nanosuspension. The initial water saturation of the porous medium in the computations varied within the range from 0 to 90%. The nanoparticle SiO2 concentration varied from 0 to 1 wt%. The particle sizes were equal to 5, 18, 22, and 50 nm. Experimentally measured wetting angles and the interfacial tension coefficient depending on the concentration and size of nanoparticles were used in computations. A mathematical model was developed, describing the transfer and diffusion of nanoparticles within the aqueous phase during immiscible displacement of oil by nanosuspension from a porous medium. Using the developed model, a systematic computational study of the effect of the initial water saturation of the core micromodel on the oil recovery factor using nanosuspension was carried out. It was revealed that with an increase in the initial water saturation, the oil recovery factor monotonically decreased in the case of displacement both by water and nanosuspension. It was shown that with an increase in the concentration of nanoparticles and a decrease in their size, the oil recovery factor increased. At that, the relative increase in the recovery factor had a maximum at an initial water saturation equal to 60%. Full article
(This article belongs to the Collection Advances in Flow of Multiphase Fluids and Granular Materials)
Show Figures

Figure 1

13 pages, 11841 KB  
Article
Thermogravitational Convection of Hybrid Nanofluid in a Porous Chamber with a Central Heat-Conducting Body
by Mikhail A. Sheremet, Dalia Sabina Cimpean and Ioan Pop
Symmetry 2020, 12(4), 593; https://doi.org/10.3390/sym12040593 - 8 Apr 2020
Cited by 35 | Viewed by 3730
Abstract
A problem with the thermogravitational energy transference of a hybrid nanofluid (Al2O3-SiO2/H2O) in a porous space with a central heat-conducting body has been presented and numerical analysis has been performed. Governing equations, transformed in terms [...] Read more.
A problem with the thermogravitational energy transference of a hybrid nanofluid (Al2O3-SiO2/H2O) in a porous space with a central heat-conducting body has been presented and numerical analysis has been performed. Governing equations, transformed in terms of non-dimensional parameters, have been solved by a developed numerical algorithm based on the finite difference technique. The behavior of streamlines and isotherms was investigated, and the impact of various important characteristics is discussed. The variation in the average and local Nusselt numbers was studied; by selecting various appropriate nano-sized particle combinations in hybrid nanosuspension, the desired energy transport strength could be obtained. The results were compared and successfully validated with previous reported numerical and experimental data from the literature. Full article
(This article belongs to the Special Issue Nanofluids in Advanced Symmetric Systems)
Show Figures

Figure 1

Back to TopTop