Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Shixia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3581 KiB  
Article
eDNA Metabarcoding Reveals Homogenization of Fish in Fujiang Segments Isolated by Cascading Hydroelectric Stations
by Chao Deng, Shixia Huang, Bolin Chen, Rong Huang, Jiaqi Zhang, Zhihui Xiao, Chengcheng Ma, Zhijian Wang and Xiaohong Liu
Animals 2025, 15(14), 2031; https://doi.org/10.3390/ani15142031 - 10 Jul 2025
Viewed by 292
Abstract
Background: The Fujiang River, a first-order branch of Jialing River, has for years been separated into six segments by six cascading hydropower stations in its downstream. However, the impact of cascading hydropower stations on its aquatic biota communities remains unclear. Methods: eDNA samples [...] Read more.
Background: The Fujiang River, a first-order branch of Jialing River, has for years been separated into six segments by six cascading hydropower stations in its downstream. However, the impact of cascading hydropower stations on its aquatic biota communities remains unclear. Methods: eDNA samples were collected in the upper, middle, and lower reaches of each river fragment during March, May, July, and December 2023, and after species identification, various statistical analyses including β-diversity, NMDS and MantelTest were performed using the R platform. Results: A total of 82 fish species belonging to 15 families were identified. The fish communities in the six fragments of the downstream Fujiang River showed a high degree of overlap, and a notable aggregation of fish communities between the upper, middle, and lower areas within each river section was also observed. Flow velocity (FV) and water temperature (TEMP) were found to be important factors in shaping fish distribution. Conclusion: Fish composition and distribution trend towards homogenization in the downstream of the Fujiang River. Full article
Show Figures

Figure 1

18 pages, 1031 KiB  
Article
Microbiome Signatures and Inflammatory Biomarkers in Culture-Negative Neonatal Sepsis
by Morcos Hanna, Shixia Huang, Matthew Ross, Anaid Reyes, Dimuthu Perera, Anil Surathu, Sara Javornik Cregeen, Joseph Hagan and Mohan Pammi
Appl. Microbiol. 2025, 5(3), 57; https://doi.org/10.3390/applmicrobiol5030057 - 24 Jun 2025
Viewed by 329
Abstract
Overuse of antibiotics is a concern in ‘culture-negative sepsis’ but it is unclear whether this is due to infection with viruses, fungi or other microbes that are not easily cultured, or whether it results from inflammatory processes. In a prospective study, we enrolled [...] Read more.
Overuse of antibiotics is a concern in ‘culture-negative sepsis’ but it is unclear whether this is due to infection with viruses, fungi or other microbes that are not easily cultured, or whether it results from inflammatory processes. In a prospective study, we enrolled 50 preterm neonates with culture-positive sepsis (CP), culture-negative sepsis (CN), and asymptomatic preterm controls (CO). The microbiome of stool, skin, and blood, including bacterial, viral and fungal components and serum cytokine profiles were evaluated. The microbiome alpha or beta diversity did not differ between CN and CO groups. A MaAsLin analysis revealed increased relative abundances of specific bacterial and fungal genera in stool and skin samples in the CN group compared to CO. The virome analysis identified 24 viruses from skin samples, but they were not statistically different among the three groups. The cytokine and chemokine biomarker profiles were elevated in the CP group but were not statistically different between the CN and CO groups. Although the CN group had a longer hospital stay and higher BPD rates than the controls in unadjusted analyses, these differences were not significant after adjusting for gestational age and birth weight. The CN infants demonstrated microbial shifts without systemic immune activation or significantly worse clinical outcomes, supporting the rationale for discontinuing antibiotics in the absence of positive cultures. Full article
Show Figures

Figure 1

21 pages, 5172 KiB  
Article
Characterizing the Ovarian Cytogenetic Dynamics of Sichuan Bream (Sinibrama taeniatus) During Vitellogenesis at a Single-Cell Resolution
by Zhe Zhao, Shixia Huang, Qilin Feng, Li Peng, Qiang Zhao and Zhijian Wang
Int. J. Mol. Sci. 2025, 26(5), 2265; https://doi.org/10.3390/ijms26052265 - 4 Mar 2025
Viewed by 936
Abstract
Vitellogenesis in fish represents a critical phase of oogenesis, significantly influencing the nutritional provisioning for oocyte maturation and subsequent offspring development. However, research on the physiological mechanisms governing vitellogenesis at the single-cell level remains limited. In this study, we performed single-nucleus RNA sequencing [...] Read more.
Vitellogenesis in fish represents a critical phase of oogenesis, significantly influencing the nutritional provisioning for oocyte maturation and subsequent offspring development. However, research on the physiological mechanisms governing vitellogenesis at the single-cell level remains limited. In this study, we performed single-nucleus RNA sequencing (snRNA-seq) on the ovaries of Sichuan bream (Sinibrama taeniatus). We first identified six distinct cell types (germ cells, follicular cells, immune cells, stromal cells, endothelial cells, and epithelial cells) in the ovaries based on typical functional marker genes. Subsequently, we reconstructed the developmental trajectory of germ cells using pseudotime analysis, which describes the transcriptional dynamics of germ cells at various developmental stages. Additionally, we identified transcription factors (TFs) specific to germ cells that exhibit high activity at each developmental stage. Furthermore, we analyzed the genetic functional heterogeneity of germ cells and follicular cells at different developmental stages to elucidate their contributions to vitellogenesis. Finally, cell interaction analysis revealed that germ cells communicate with somatic cells or with each other via multiple receptors and ligands to regulate growth, development, and yolk acquisition. These findings enhance our understanding of the physiological mechanisms underlying vitellogenesis in fish, providing a theoretical foundation for regulating ovarian development in farmed fish. Full article
Show Figures

Figure 1

12 pages, 4231 KiB  
Article
Calcium Uptake Pattern and Its Transport Pathway in ‘Shixia’ Longan Fruit
by Wenpei Song, Siqi Huang, Odit F. Kurniadinata, Ziqin Yang and Xuming Huang
Agronomy 2024, 14(11), 2480; https://doi.org/10.3390/agronomy14112480 - 24 Oct 2024
Cited by 1 | Viewed by 1368
Abstract
Calcium plays an irreplaceable role as an essential mineral nutrient in plants, particularly in the formation of calcium pectinate, which is critical for cell wall construction. Fruits deficient in calcium are more susceptible to cell wall disintegration, bacterial infections, and the development of [...] Read more.
Calcium plays an irreplaceable role as an essential mineral nutrient in plants, particularly in the formation of calcium pectinate, which is critical for cell wall construction. Fruits deficient in calcium are more susceptible to cell wall disintegration, bacterial infections, and the development of various physiological disorders and fungal diseases. Despite its importance, limited research has focused on calcium nutrition in longan, and the pathways and regulatory mechanisms underlying calcium uptake in this fruit remain unclear. In this study, we investigated calcium uptake in longan at different developmental stages, examined its variation patterns, analyzed the correlations between calcium concentrations in the pedicel and the fruit, and explored the distribution of calcium in the pedicel. We also studied the functions of xylem/apoplastic and symplastic pathways using dye tracers. Our findings contribute to a deeper understanding of calcium nutrition in longan and clarify the transportation characteristics of calcium within longan fruit. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Figure 1

20 pages, 1853 KiB  
Article
Chinese Named Entity Recognition Based on Multi-Level Representation Learning
by Weijun Li, Jianping Ding, Shixia Liu, Xueyang Liu, Yilei Su and Ziyi Wang
Appl. Sci. 2024, 14(19), 9083; https://doi.org/10.3390/app14199083 - 8 Oct 2024
Cited by 3 | Viewed by 1701
Abstract
Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which [...] Read more.
Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which hinders the accuracy of entity recognition. To this end, a Chinese NER model based on multi-level representation learning is proposed. The model leverages a pre-trained word-based embedding to capture contextual information. A linear layer adjusts dimensions to fit an Extended Long Short-Term Memory (XLSTM) network, enabling the capture of long-range dependencies and contextual information, and providing deeper representations. An adaptive multi-head attention mechanism is proposed to enhance the ability to capture global dependencies and comprehend deep semantic context. Additionally, GlobalPointer with rotational position encoding integrates global information for entity category prediction. Projected Gradient Descent (PGD) is incorporated, introducing perturbations in the embedding layer of the pre-trained model to enhance stability in noisy environments. The proposed model achieves F1-scores of 96.89%, 74.89%, 72.19%, and 80.96% on the Resume, Weibo, CMeEE, and CLUENER2020 datasets, respectively, demonstrating improvements over baseline and comparison models. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

14 pages, 5175 KiB  
Article
Comparative Transcriptome Analysis of Mature Leaves of Dimocarpus longan cv. ‘Sijimi’ Provides Insight into Its Continuous-Flowering Trait
by Shilian Huang, Xinmin Lv, Junbin Wei, Dongmei Han, Jianguang Li and Dongliang Guo
Horticulturae 2024, 10(9), 974; https://doi.org/10.3390/horticulturae10090974 - 14 Sep 2024
Cited by 1 | Viewed by 962
Abstract
Longan (Dimocarpus longan Lour.) is an important tropical and subtropical fruit, and most of its cultivars bloom once a year (once-flowering, OF). Dimocarpus longan cv. ‘Sijimi’ (SJ) is a tropical ecotype variety that blooms several times a year (continuous-flowering, CF) without the [...] Read more.
Longan (Dimocarpus longan Lour.) is an important tropical and subtropical fruit, and most of its cultivars bloom once a year (once-flowering, OF). Dimocarpus longan cv. ‘Sijimi’ (SJ) is a tropical ecotype variety that blooms several times a year (continuous-flowering, CF) without the need for low-temperature induction. Several studies have focused on the mechanism of continuous flowering in SJ longan; however, none used leaves as research material. As leaves are a key organ in sensing floral-induction signals, we compared gene-expression differences between mature leaves of CF (SJ) and OF (D. longan cv. ‘Shixia’ (SX) and D. longan cv. ‘Chuliang’ (CL)) longan by transcriptome sequencing. An average of 47,982,637, 43,833,340 and 54,441,291 clean reads were obtained for SJ, SX and CL respectively, and a total of 6745 differentially expressed genes (DEGs) were detected. Following Metabolic pathways, Plant-pathogen interaction and Biosynthesis of secondary metabolites, most of the other genes were assigned to the KEGG classifications of MAPK signaling pathway- plant, Plant hormone signal transduction, Amino sugar and nucleotide sugar metabolism and Starch and sucrose metabolism. WGCNA analysis clustered genes into 27 modules, among which bisque4 and darkorange2 module genes specifically were expressed at low and high levels in SJ, respectively. Different gene-expression patterns were detected between CF and OF longan in bisque4 and darkorange2 modules, especially the high levels of transcription factor (TF) expression and the large number of gibberellic acid (GA)-signaling-pathway-specific genes expressed at high levels in CF longan (SJ). Floral-induction-gene expression levels in CF longan, such as levels of GA-signaling-related and FT genes, were always high. In CF longan, after vegetative-growth accumulation, flowers could be directly induced, thereby eliminating the need for low-temperature induction. Full article
(This article belongs to the Special Issue Fruit Tree Physiology and Molecular Biology)
Show Figures

Figure 1

15 pages, 2783 KiB  
Article
Comprehensive Evaluation of the ‘Shixia’ Longan Quality under Postharvest Ambient Storage: The Volatile Compounds Played a Critical Part
by Jingyi Li, Tao Luo, Jianhang Xu, Difa Zhu, Dongmei Han and Zhenxian Wu
Horticulturae 2024, 10(6), 585; https://doi.org/10.3390/horticulturae10060585 - 3 Jun 2024
Viewed by 1481
Abstract
Longan fruit generally undergoes rapid quality deterioration during the postharvest stage, with the manifestation of flavor loss as well as pronounced off-odor production. Nevertheless, the unapparent aroma makes people ignore the odor change in postharvest longan. Sensory analysis serves as an indispensable method [...] Read more.
Longan fruit generally undergoes rapid quality deterioration during the postharvest stage, with the manifestation of flavor loss as well as pronounced off-odor production. Nevertheless, the unapparent aroma makes people ignore the odor change in postharvest longan. Sensory analysis serves as an indispensable method combining instrumental detection and the perceptibility of human sensation in a comprehensive evaluation of quality during production and consumption. In this study, we established the evaluating data of the appearance, flavor, taste substances, volatile profiles, and deterioration of ‘Shixia’ longan throughout room-temperature storage using instrument assessment and descriptive measurements. Our results indicated that both the appearance state and the taste condition notably engendered confusion or trouble for consumers to judge under the quality transition period. Conversely, the development of odor was highly consistent with that of quality deterioration. Some unpleasant volatile substances including alcohol (ethanol), acid (acetic acid), and esters (acetic acid methyl ester and ethyl acetate) were probably the cause of off-odor during the storage. The result of the sensory evaluation also presents a more significant relevance between the overall quality and the odor. Generally, the work paved the way to reveal the importance of odor profiles for assessing the comprehensive quality condition of postharvest room-temperature stored longan. Full article
Show Figures

Figure 1

16 pages, 6279 KiB  
Article
Microbial Mineralization-Based Rapid and High-Strength Simultaneous Repair of Surrounding Rock Fracture Zones and Lining Cracks
by Rongzheng Zhang, Shixia Zhang, Zhichao Song, Danyi Shen and Chuangzhou Wu
Sustainability 2024, 16(9), 3751; https://doi.org/10.3390/su16093751 - 30 Apr 2024
Cited by 2 | Viewed by 1622
Abstract
Grouting technology based on microbial mineralization represents a novel approach to enhancing the properties of rock and soil. Widely studied for its combination of high efficiency and environmental friendliness, this method improves the strength and permeability of rock and soil. In this study, [...] Read more.
Grouting technology based on microbial mineralization represents a novel approach to enhancing the properties of rock and soil. Widely studied for its combination of high efficiency and environmental friendliness, this method improves the strength and permeability of rock and soil. In this study, a novel approach involving bioslurry + filling particles was proposed to reinforce sand columns. It was observed that the addition of filling particles provided new nucleation sites for crystallization, significantly enhancing the cementation effect of sand particles. After 3 days of grouting treatment, sand columns containing 10% filling particles exhibited an order of magnitude reduction in permeability with the unconfined compressive strength (UCS) reaching 2.5 MPa, more than twice that of sand columns reinforced with bioslurry alone. Additionally, this study presented a method for the simultaneous repair of sand particles and concrete cracks. Results indicated that after 3 days of the grouting treatment, the interfacial shear strength between sand columns and concrete reached 100 kPa. Moreover, for concrete with crack apertures less than 1 mm, the permeability coefficient was reduced by over 80%, while the recovery ratio of the splitting tensile strength reached 64.2%. These findings highlight the potential of microbial mineralized grouting technology in addressing practical challenges, providing a foundation for the rapid and high-strength simultaneous repair of tunnel-surrounding rock fracture zones and lining cracks. Full article
(This article belongs to the Special Issue Sustainable Geotechnical Engineering)
Show Figures

Figure 1

13 pages, 1455 KiB  
Article
RBD-Protein/Peptide Vaccine UB-612 Elicits Mucosal and Fc-Mediated Antibody Responses against SARS-CoV-2 in Cynomolgus Macaques
by Shixia Wang, Farshad Guirakhoo, Sivakumar Periasamy, Valorie Ryan, Jonathan Wiggins, Chandru Subramani, Brett Thibodeaux, Jaya Sahni, Michael Hellerstein, Natalia A. Kuzmina, Alexander Bukreyev, Jean-Cosme Dodart and Alexander Rumyantsev
Vaccines 2024, 12(1), 40; https://doi.org/10.3390/vaccines12010040 - 29 Dec 2023
Viewed by 2908
Abstract
Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein–peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate [...] Read more.
Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein–peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays. Additionally, immunized animals developed mucosal antibodies in bronchoalveolar lavage fluids (BAL). The level of mucosal or serum ADMP and ADNKA antibodies was found to be UB-612 dose-dependent. Our results highlight that the novel subunit UB-612 vaccine is a potent B-cell immunogen inducing polyfunctional antibody responses contributing to anti-viral immunity and vaccine efficacy. Full article
(This article belongs to the Special Issue COVID Vaccines: Design, Development, and Immune Response Studies)
Show Figures

Figure 1

13 pages, 1670 KiB  
Article
Dimethyl Sulfoxide Inhibits Bile Acid Synthesis in Healthy Mice but Does Not Protect Mice from Bile-Acid-Induced Liver Damage
by Xi Chen, Huiqiao Li, Yu’e Liu, Jing Qi, Bingning Dong, Shixia Huang, Shangang Zhao and Yi Zhu
Biology 2023, 12(8), 1105; https://doi.org/10.3390/biology12081105 - 9 Aug 2023
Viewed by 5079
Abstract
Bile acids serve a vital function in lipid digestion and absorption; however, their accumulation can precipitate liver damage. In our study, we probed the effects of dimethyl sulfoxide (DMSO) on bile acid synthesis and the ensuing liver damage in mice induced by bile [...] Read more.
Bile acids serve a vital function in lipid digestion and absorption; however, their accumulation can precipitate liver damage. In our study, we probed the effects of dimethyl sulfoxide (DMSO) on bile acid synthesis and the ensuing liver damage in mice induced by bile acids. Our findings indicate that DMSO efficaciously curbs bile acid synthesis by inhibiting key enzymes involved in the biosynthetic pathway, both in cultured primary hepatocytes and in vivo. Contrarily, we observed that DMSO treatment did not confer protection against bile-acid-induced liver damage in two distinct mouse models: one induced by a 0.1% DDC diet, leading to bile duct obstruction, and another induced by a CDA-HFD, resulting in non-alcoholic steatohepatitis (NASH). Histopathological and biochemical analyses unveiled a comparable extent of liver injury and fibrosis levels in DMSO-treated mice, characterized by similar levels of increase in Col1a1 and Acta2 expression and equivalent total liver collagen levels. These results suggest that, while DMSO can promptly inhibit bile acid synthesis in healthy mice, compensatory mechanisms might rapidly override this effect, negating any protective impact against bile-acid-induced liver damage in mice. Through these findings, our study underscores the need to reconsider treating DMSO as a mere inert solvent and prompts further exploration to identify more effective therapeutic strategies for the prevention and treatment of bile-acid-associated liver diseases. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

16 pages, 5250 KiB  
Article
GA3 Treatment Delays the Deterioration of ‘Shixia’ Longan during the On-Tree Preservation and Room-Temperature Storage and Up-Regulates Antioxidants
by Tao Luo, Xiaolan Lin, Tingting Lai, Libing Long, Ziying Lai, Xinxin Du, Xiaomeng Guo, Liang Shuai, Dongmei Han and Zhenxian Wu
Foods 2023, 12(10), 2032; https://doi.org/10.3390/foods12102032 - 17 May 2023
Cited by 11 | Viewed by 2359
Abstract
Gibberellic acids had been proven to improve the fruit quality and storability by delaying deterioration and maintaining the antioxidant system. In this study, the effect of GA3 spraying at different concentrations (10, 20, and 50 mg L−1) on the quality [...] Read more.
Gibberellic acids had been proven to improve the fruit quality and storability by delaying deterioration and maintaining the antioxidant system. In this study, the effect of GA3 spraying at different concentrations (10, 20, and 50 mg L−1) on the quality of on-tree preserved ‘Shixia’ longan was examined. Only 50 mg L−1 GA3 significantly delayed the decline of soluble solids (22.0% higher than the control) and resulted in higher total phenolics content (TPC), total flavonoid content (TFC), and phenylalanine ammonia-lyase activity in pulp at the later stages. The widely targeted metabolome analysis showed that the treatment reprogrammed secondary metabolites and up-regulated many tannins, phenolic acids, and lignans during the on-tree preservation. More importantly, the preharvest 50 mg L−1 GA3 spraying (at 85 and 95 days after flowering) led to significantly delayed pericarp browning and aril breakdown, as well as lower pericarp relative conductivity and mass loss at the later stages of room-temperature storage. The treatment also resulted in higher antioxidants in pulp (vitamin C, phenolics, and reduced glutathione) and pericarp (vitamin C, flavonoids, and phenolics). Therefore, preharvest 50 mg L−1 GA3 spraying is an effective method for maintaining the quality and up-regulating antioxidants of longan fruit during both on-tree preservation and room-temperature storage. Full article
Show Figures

Graphical abstract

14 pages, 3316 KiB  
Article
Toward Green Farming Technologies: A Case Study of Oyster Shell Application in Fruit and Vegetable Production in Xiamen
by Yan Wang, Mengya Ji, Min Wu, Ling Weng, Yongming Wang, Lingyi Hu and Min-Jie Cao
Sustainability 2023, 15(1), 663; https://doi.org/10.3390/su15010663 - 30 Dec 2022
Cited by 2 | Viewed by 4097
Abstract
In recent decades, due to the intensification of human production and living activities, the process of soil acidification in China has been greatly accelerated, which has become an important factor limiting the sustainable development of agriculture. In this paper, an oyster shell soil [...] Read more.
In recent decades, due to the intensification of human production and living activities, the process of soil acidification in China has been greatly accelerated, which has become an important factor limiting the sustainable development of agriculture. In this paper, an oyster shell soil conditioner prepared from discarded oyster shells was applied to the field and Shixia longan and chives were used as experimental objects for field experiments. Each crop was comprised of two groups. The application amount of longan in the control group was 0 kg/tree, and that in the experimental group was 8 kg/tree. The distribution of chives applied in the control group was 0 kg/m2, while that in the experimental group was 0.65 kg/m2. The results showed that, after the application of oyster shell soil conditioner, the soil pH value in Shixia longan experimental field increased by 1.30 units, and the content of soil organic matter, alkali hydrolyzed nitrogen and exchangeable calcium increased by 57.63%, 71.98%, and 49.13%. At the same time, the single fruit weight of Shixia longan increased by 6.37%, the soluble sugar content increased by 16.18%, and the titratable acid of the fruit decreased by 10.95%. Compared with the control group, the soil pH value of chives increased by 1.03 units, its yield increased by 57.8%, and various morphological indicators were improved. The results showed that the application of oyster shell soil conditioner could significantly improve the soil acidification of Shixia longan and chives, improve soil fertility, and effectively improve the yield and quality of fruits and vegetables. Full article
Show Figures

Figure 1

14 pages, 3650 KiB  
Article
Rubbing Salt in the Wound: Molecular Evolutionary Analysis of Pain-Related Genes Reveals the Pain Adaptation of Cetaceans in Seawater
by Xiaoyue Ding, Fangfang Yu, Xiaofang He, Shixia Xu, Guang Yang and Wenhua Ren
Animals 2022, 12(24), 3571; https://doi.org/10.3390/ani12243571 - 16 Dec 2022
Cited by 2 | Viewed by 14453
Abstract
Pain, usually caused by a strong or disruptive stimulus, is an unpleasant sensation that serves as a warning to organisms. To adapt to extreme environments, some terrestrial animals have evolved to be inherently insensitive to pain. Cetaceans are known as supposedly indifferent to [...] Read more.
Pain, usually caused by a strong or disruptive stimulus, is an unpleasant sensation that serves as a warning to organisms. To adapt to extreme environments, some terrestrial animals have evolved to be inherently insensitive to pain. Cetaceans are known as supposedly indifferent to pain from soft tissue injury representatives of marine mammals. However, the molecular mechanisms that explain how cetaceans are adapted to pain in response to seawater environment remain unclear. Here, we performed a molecular evolutionary analysis of pain-related genes in selected representatives of cetaceans. ASIC4 gene was identified to be pseudogenized in all odontocetes (toothed whales) except from Physeter macrocephalus (sperm whales), and relaxed selection of this gene was detected in toothed whales with pseudogenized ASIC4. In addition, positive selection was detected in pain perception (i.e., ASIC3, ANO1, CCK, and SCN9A) and analgesia (i.e., ASIC3, ANO1, CCK, and SCN9A) genes among the examined cetaceans. In this study, potential convergent amino acid substitutions within predicted proteins were found among the examined cetaceans and other terrestrial mammals, inhabiting extreme environments (e.g., V441I of TRPV1 in cetaceans and naked mole rats). Moreover, specific amino acid substitutions within predicted sequences of several proteins were found in the studied representatives of cetaceans (e.g., F56L and D163A of ASIC3, E88G of GRK2, and F159L of OPRD1). Most of the substitutions were located within important functional domains of proteins, affecting their protein functions. The above evidence suggests that cetaceans might have undergone adaptive molecular evolution in pain-related genes through different evolutionary patterns to adapt to pain, resulting in greater sensitivity to pain and more effective analgesia. This study could have implications for diagnosis and treatment of human pain. Full article
(This article belongs to the Special Issue Adaptive Evolution and Trait Formation of Animals)
Show Figures

Figure 1

15 pages, 6353 KiB  
Article
Lightweight Apple Detection in Complex Orchards Using YOLOV5-PRE
by Lijuan Sun, Guangrui Hu, Chao Chen, Haoxuan Cai, Chuanlin Li, Shixia Zhang and Jun Chen
Horticulturae 2022, 8(12), 1169; https://doi.org/10.3390/horticulturae8121169 - 8 Dec 2022
Cited by 30 | Viewed by 3393
Abstract
The detection of apple yield in complex orchards plays an important role in smart agriculture. Due to the large number of fruit trees in the orchard, improving the speed of apple detection has become one of the challenges of apple yield detection. Additional [...] Read more.
The detection of apple yield in complex orchards plays an important role in smart agriculture. Due to the large number of fruit trees in the orchard, improving the speed of apple detection has become one of the challenges of apple yield detection. Additional challenges in the detection of apples in complex orchard environments are vision obstruction by leaves, branches and other fruit, and uneven illumination. The YOLOv5 (You Only Look Once version 5) network structure has thus far been increasingly utilized for fruit recognition, but its detection accuracy and real-time detection speed can be improved. Thus, an upgraded lightweight apple detection method YOLOv5-PRE (YOLOv5 Prediction) is proposed for the rapid detection of apple yield in an orchard environment. The ShuffleNet and the GhostNet lightweight structures were introduced into the YOLOv5-PRE model to reduce the size of the model, and the CA (Coordinate Attention) and CBAM (Convolutional Block Attention Module) attention mechanisms were used to improve the detection accuracy of the algorithm. After applying this algorithm on PC with NVIDIA Quadro P620 GPU, and after comparing the results of the YOLOv5s (You Only Look Once version 5 small) and the YOLOv5-PRE models outputs, the following conclusions were obtained: the average precision of the YOLOv5-PRE model was 94.03%, which is 0.58% higher than YOLOv5s. As for the average detection time of a single image on GPU and CPU, it was 27.0 ms and 172.3 ms, respectively, which is 17.93% and 35.23% higher than YOLOV5s. Added to that, the YOLOv5-PRE model had a missed detection rate of 6.54% when being subject to back-light conditions, and a false detection rate of 4.31% when facing front-light conditions, which are 2.8% and 0.86% higher than YOLOv5s, respectively. Finally, the feature extraction process of the YOLOv5-PRE model was presented in the form of a feature map visualization, which enhances the interpretability of the model. Thus, the YOLOv5-PRE model is more suitable for transplanting into embedded devices and adapts well to different lighting conditions in the orchard, which provides an effective method and a theoretical basis for the rapid detection of apples in the process of rapid detection of apple yield. Full article
Show Figures

Figure 1

19 pages, 15936 KiB  
Article
Corrosion Behavior of J55 and N80 Carbon Steels in Simulated Formation Water under Different CO2 Partial Pressures
by Shixia Cheng, Xuehui Zhao, Anqing Fu, Dejun Li, Chengxian Yin and Yaorong Feng
Coatings 2022, 12(10), 1402; https://doi.org/10.3390/coatings12101402 - 26 Sep 2022
Cited by 7 | Viewed by 2015
Abstract
The purpose of this paper is to reveal the corrosion behavior of J55 and N80 carbon steels in formation water under oil wells at different partial pressures, explore the formation process of corrosion product films under supercritical CO2 conditions, and analyze the [...] Read more.
The purpose of this paper is to reveal the corrosion behavior of J55 and N80 carbon steels in formation water under oil wells at different partial pressures, explore the formation process of corrosion product films under supercritical CO2 conditions, and analyze the reasons why the microstructure of carbon steel affects the corrosion behavior. The results show that the corrosion rate gradually increases with the increase in CO2 partial pressure. When the pressure exceeds 10 MPa, the corrosion rate of J55 increases slightly, and that of N80 decreases slightly. Under different partial pressures, the surface composition of the corrosion product film of J55 steel is FeCO3, and that of N80 steel is FeCO3 with a small amount of Fe3C. The analysis shows that the corrosion product films of two kinds of carbon steels can be divided into three layers under the condition of supercritical CO2. There are holes in the middle layer, which are formed first, and then the inner layer and the outer layer are formed at the same time. It is believed that the difference in the morphology and distribution of Fe3C is the reason why the corrosion rate of J55 steel is lower than that of N80 steel. Fe3C in J55 steel is lamellar, which can anchor FeCO3, promote the formation of corrosion product films, and improve the compactness of corrosion product films. However, the Fe3C in N80 is granular and dispersed in the ferrite matrix, which makes it easy to fall off the surface, form pits, and destroy the integrity of the corrosion product film. Full article
Show Figures

Figure 1

Back to TopTop