Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Serengeti ecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1593 KiB  
Article
Occurrence of Echinococcus felidis in Apex Predators and Warthogs in Tanzania: First Molecular Evidence of Leopards as a New, Definitive Host and Implications for Ecosystem Health
by Barakaeli Abdieli Ndossi, Eblate Ernest Mjingo, Mary Wokusima Zebedayo, Seongjun Choe, Hansol Park, Lee Dongmin, Keeseon S. Eom and Mohammed Mebarek Bia
Pathogens 2025, 14(5), 443; https://doi.org/10.3390/pathogens14050443 - 30 Apr 2025
Viewed by 458
Abstract
(1) Background: Limited information on Echinococcus species among the wildlife in Tanzania has created a significant knowledge gap regarding their distribution, host range, and zoonotic potential. This study aimed to enhance the understanding of Echinococcus felidis transmission dynamics within the great Serengeti ecosystem. [...] Read more.
(1) Background: Limited information on Echinococcus species among the wildlife in Tanzania has created a significant knowledge gap regarding their distribution, host range, and zoonotic potential. This study aimed to enhance the understanding of Echinococcus felidis transmission dynamics within the great Serengeti ecosystem. (2) Methods: A total of 37 adult Echinococcus specimens were collected from a leopard (Panthera pardus) (n = 1) in Maswa Game Reserve and 7 from a lion (Panthera leo) (n = 1) in Loliondo. Two hydatid cysts were also obtained from warthogs (n = 2) in the Serengeti National Park. (3) Results: Morphological examination revealed infertile cysts in warthogs that were molecularly identified as E. felidis. This marks the first molecular evidence of E. felidis in leopards and warthogs in Tanzania. Pairwise similarity analysis showed 98.7%–99.5% identity between Tanzanian, Ugandan, and South African isolates. Thirteen unique haplotypes were identified, with a haplotype diversity of (Hd = 0.9485) indicating genetic variability. Phylogenetic analysis grouped E. felidis into a single lineage, with the leopard isolate forming a distinct haplotype, suggesting leopards as an emerging host. Lion and warthog isolates shared multiple mutational steps, suggesting possible genetic divergence. (4) Conclusions: This study confirms African lions and leopards as definitive hosts and warthogs as potential intermediate hosts of E. felidis in the Serengeti ecosystem. Our findings highlight disease spillover risks and stress the importance of ecosystem-based conservation in wildlife–livestock overlap areas. Although E. felidis is believed to be confined to wildlife, the proximity of infected animals to pastoralist communities raises concerns for spillover. These findings highlight the importance of ecosystem-based surveillance, especially in wildlife–livestock–human interface areas. Full article
(This article belongs to the Special Issue Zoonotic Cestodoses: Echinococcosis and Taeniosis)
Show Figures

Figure 1

16 pages, 3477 KiB  
Article
An Integrated Ecological Niche Modelling Framework for Risk Mapping of Peste des Petits Ruminants Virus Exposure in African Buffalo (Syncerus caffer) in the Greater Serengeti-Mara Ecosystem
by Laura Carrera-Faja, Chris Yesson, Bryony A. Jones, Camilla T. O. Benfield and Richard A. Kock
Pathogens 2023, 12(12), 1423; https://doi.org/10.3390/pathogens12121423 - 7 Dec 2023
Cited by 2 | Viewed by 2115
Abstract
Peste des petits ruminants (PPR) is a highly contagious viral disease of small ruminants that threatens livelihoods and food security in developing countries and, in some cases, wild ungulate species conservation. The Greater Serengeti-Mara Ecosystem (GSME) encompasses one of the major wildlife populations [...] Read more.
Peste des petits ruminants (PPR) is a highly contagious viral disease of small ruminants that threatens livelihoods and food security in developing countries and, in some cases, wild ungulate species conservation. The Greater Serengeti-Mara Ecosystem (GSME) encompasses one of the major wildlife populations of PPR virus (PPRV)-susceptible species left on earth, although no clinical disease has been reported so far. This study aimed to gain further knowledge about PPRV circulation in the GSME by identifying which factors predict PPRV seropositivity in African buffalo (Syncerus caffer). Following an ecological niche modeling framework to map host-pathogen distribution, two models of PPRV exposure and buffalo habitat suitability were performed using serological data and buffalo censuses. Western Maasai Mara National Reserve and Western Serengeti National Park were identified as high-risk areas for PPRV exposure in buffalo. Variables related to wildlife-livestock interaction contributed to the higher risk of PPRV seropositivity in buffalo, providing supportive evidence that buffalo acquire the virus through contact with infected livestock. These findings can guide the design of cost-effective PPRV surveillance using buffalo as a sentinel species at the identified high-risk locations. As more intensive studies have been carried out in Eastern GSME, this study highlights the need for investigating PPRV dynamics in Western GSME. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Figure 1

30 pages, 3735 KiB  
Article
Peste des Petits Ruminants Virus Infection at the Wildlife–Livestock Interface in the Greater Serengeti Ecosystem, 2015–2019
by Bryony A. Jones, Mana Mahapatra, Daniel Mdetele, Julius Keyyu, Francis Gakuya, Ernest Eblate, Isaac Lekolool, Campaign Limo, Josephine N. Ndiwa, Peter Hongo, Justin S. Wanda, Ligge Shilinde, Maulid Mdaki, Camilla Benfield, Krupali Parekh, Martin Mayora Neto, David Ndeereh, Gerald Misinzo, Mariam R. Makange, Alexandre Caron, Arnaud Bataille, Geneviève Libeau, Samia Guendouz, Emanuel S. Swai, Obed Nyasebwa, Stephen L. Koyie, Harry Oyas, Satya Parida and Richard Kockadd Show full author list remove Hide full author list
Viruses 2021, 13(5), 838; https://doi.org/10.3390/v13050838 - 6 May 2021
Cited by 29 | Viewed by 7919
Abstract
Peste des petits ruminants (PPR) is a viral disease of goats and sheep that occurs in Africa, the Middle East and Asia with a severe impact on livelihoods and livestock trade. Many wild artiodactyls are susceptible to PPR virus (PPRV) infection, and some [...] Read more.
Peste des petits ruminants (PPR) is a viral disease of goats and sheep that occurs in Africa, the Middle East and Asia with a severe impact on livelihoods and livestock trade. Many wild artiodactyls are susceptible to PPR virus (PPRV) infection, and some outbreaks have threatened endangered wild populations. The role of wild species in PPRV epidemiology is unclear, which is a knowledge gap for the Global Strategy for the Control and Eradication of PPR. These studies aimed to investigate PPRV infection in wild artiodactyls in the Greater Serengeti and Amboseli ecosystems of Kenya and Tanzania. Out of 132 animals purposively sampled in 2015–2016, 19.7% were PPRV seropositive by ID Screen PPR competition enzyme-linked immunosorbent assay (cELISA; IDvet, France) from the following species: African buffalo, wildebeest, topi, kongoni, Grant’s gazelle, impala, Thomson’s gazelle, warthog and gerenuk, while waterbuck and lesser kudu were seronegative. In 2018–2019, a cross-sectional survey of randomly selected African buffalo and Grant’s gazelle herds was conducted. The weighted estimate of PPRV seroprevalence was 12.0% out of 191 African buffalo and 1.1% out of 139 Grant’s gazelles. All ocular and nasal swabs and faeces were negative by PPRV real-time reverse transcription-polymerase chain reaction (RT-qPCR). Investigations of a PPR-like disease in sheep and goats confirmed PPRV circulation in the area by rapid detection test and/or RT-qPCR. These results demonstrated serological evidence of PPRV infection in wild artiodactyl species at the wildlife–livestock interface in this ecosystem where PPRV is endemic in domestic small ruminants. Exposure to PPRV could be via spillover from infected small ruminants or from transmission between wild animals, while the relatively low seroprevalence suggests that sustained transmission is unlikely. Further studies of other major wild artiodactyls in this ecosystem are required, such as impala, Thomson’s gazelle and wildebeest. Full article
Show Figures

Figure 1

19 pages, 3036 KiB  
Article
Spatio-Temporal Changes in Wildlife Habitat Quality in the Greater Serengeti Ecosystem
by Hamza K. Kija, Joseph O. Ogutu, Lazaro J. Mangewa, John Bukombe, Francesca Verones, Bente J. Graae, Jafari R. Kideghesho, Mohammed Y. Said and Emmanuel F. Nzunda
Sustainability 2020, 12(6), 2440; https://doi.org/10.3390/su12062440 - 20 Mar 2020
Cited by 35 | Viewed by 5731
Abstract
Understanding habitat quality and its dynamics is imperative for maintaining healthy wildlife populations and ecosystems. We mapped and evaluated changes in habitat quality (1975–2015) in the Greater Serengeti Ecosystem of northern Tanzania using the Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model. [...] Read more.
Understanding habitat quality and its dynamics is imperative for maintaining healthy wildlife populations and ecosystems. We mapped and evaluated changes in habitat quality (1975–2015) in the Greater Serengeti Ecosystem of northern Tanzania using the Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model. This is the first habitat quality assessment of its kind for this ecosystem. We characterized changes in habitat quality in the ecosystem and in a 30 kilometer buffer area. Four habitat quality classes (poor, low, medium and high) were identified and their coverage quantified. Overall (1975–2015), habitat quality declined over time but at rates that were higher for habitats with lower protection level or lower initial quality. As a result, habitat quality deteriorated the most in the unprotected and human-dominated buffer area surrounding the ecosystem, at intermediate rates in the less heavily protected Wildlife Management Areas, Game Controlled Areas, Game Reserves and the Ngorongoro Conservation Area and the least in the most heavily protected Serengeti National Park. The deterioration in habitat quality over time was attributed primarily to anthropogenic activities and major land use policy changes. Effective implementation of land use plans, robust and far-sighted institutional arrangements, adaptive legal and policy instruments are essential to sustaining high habitat quality in contexts of rapid human population growth. Full article
Show Figures

Figure 1

14 pages, 668 KiB  
Article
Responses of African Grasses in the Genus Sporobolus to Defoliation and Sodium Stress: Tradeoffs, Cross-Tolerance, or Independent Responses?
by Daniel M. Griffith and T. Michael Anderson
Plants 2013, 2(4), 712-725; https://doi.org/10.3390/plants2040712 - 8 Nov 2013
Cited by 3 | Viewed by 6368
Abstract
In the Serengeti ecosystem of East Africa, grazing ungulates prefer areas with elevated grass Na, suggesting that some grasses tolerate both high soil Na and defoliation. We performed a factorial Na-by-defoliation greenhouse study with five abundant Sporobolus congeners to explore whether Serengeti grasses [...] Read more.
In the Serengeti ecosystem of East Africa, grazing ungulates prefer areas with elevated grass Na, suggesting that some grasses tolerate both high soil Na and defoliation. We performed a factorial Na-by-defoliation greenhouse study with five abundant Sporobolus congeners to explore whether Serengeti grasses possess traits which: (i) confer tolerance to both Na and defoliation (cross-tolerance); (ii) display a tradeoff; or (iii) act independently in their tolerances. Our expectation was that related grasses would exhibit cross-tolerance when simultaneously subjected to Na and defoliation. Instead, we found that physiological tolerances and growth responses to Na and defoliation did not correlate but instead acted independently: species characterized by intense grazing in the field showed no growth or photosynthetic compensation for combined Na and defoliation. Additionally, in all but the highest Na dosage, mortality was higher when species were exposed to both Na and defoliation together. Across species, mortality rates were greater in short-statured species which occur on sodic soils in heavily grazed areas. Mortality among species was positively correlated with specific leaf area, specific root length, and relative growth rate, suggesting that rapidly growing species which invest in low cost tissues have higher rates of mortality when exposed to multiple stressors. We speculate that the prevalence of these species in areas of high Na and disturbance is explained by alternative strategies, such as high fecundity, a wide range of germination conditions, or further dispersal, to compensate for the lack of additional tolerance mechanisms. Full article
(This article belongs to the Special Issue Interaction Between Abiotic and Biotic Stresses in Plants)
Show Figures

Figure 1

Back to TopTop