Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Semen Hoveniae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4479 KB  
Article
Exploring the Nutraceutical Potential of a Food–Medicine Compound for Metabolic-Associated Fatty Liver Disease via Lipidomics and Network Pharmacology
by Yuru Deng, Jie Cui, Yuxuan Jiang, Jian Zhang, Jinchi Jiang, Quanbin Zhang and Yonghong Hu
Foods 2025, 14(7), 1257; https://doi.org/10.3390/foods14071257 - 3 Apr 2025
Cited by 2 | Viewed by 2870
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a prevalent global health issue closely tied to dietary habits, impacting a significant portion of the adult population. MAFLD is linked to various metabolic disorders, elevating risks of cirrhosis and hepatocellular carcinoma and severely impacting patients’ quality [...] Read more.
Metabolic-associated fatty liver disease (MAFLD) is a prevalent global health issue closely tied to dietary habits, impacting a significant portion of the adult population. MAFLD is linked to various metabolic disorders, elevating risks of cirrhosis and hepatocellular carcinoma and severely impacting patients’ quality of life. While therapeutic research has progressed, effective food-based interventions remain scarce. Natural products, rich in bioactive compounds and offering health benefits, have gained attention for their potential in managing MAFLD. This study employed network pharmacology and lipidomics to investigate the therapeutic effects of Food and Medicine Homology (FMH) on MAFLD using a high-fat-diet-induced HepG2 cell model. We identified 169 potential bioactive components from Radix Puerariae, Hericium erinaceus, Rhizoma Curcumae longae, Camellia oleifera, and Hoveniae Dulcis Semen, constructing a drug–component–target network that highlighted 34 key targets. The characteristic components of this FMH compound solution (HSD) were identified using UPLC-QTOF-MS/MS. In vitro, HSD significantly reduced intracellular lipid accumulation, decreased inflammatory markers, and mitigated hepatocyte damage. Lipidomics analysis revealed significant alterations in lipid metabolites, suggesting HSD’s potential to modulate sphingolipid and glycerophospholipid metabolism, thus improving MAFLD outcomes. This research underscores the critical role of the FMH complex in modulating lipid metabolism and inflammatory pathways, offering valuable insights for developing FMH-based dietary supplements and functional foods to alleviate MAFLD. By leveraging the synergistic effects of natural compounds, our findings hold significant implications for innovative nutritional strategies in managing this prevalent metabolic disorder. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

16 pages, 4152 KB  
Article
Computer Vision-Based Fire–Ice Ion Algorithm for Rapid and Nondestructive Authentication of Ziziphi Spinosae Semen and Its Counterfeits
by Peng Chen, Xutong Shao, Guangyu Wen, Yaowu Song, Rao Fu, Xiaoyan Xiao, Tulin Lu, Peina Zhou, Qiaosheng Guo, Hongzhuan Shi and Chenghao Fei
Foods 2025, 14(1), 5; https://doi.org/10.3390/foods14010005 - 24 Dec 2024
Viewed by 1700
Abstract
The authentication of Ziziphi Spinosae Semen (ZSS), Ziziphi Mauritianae Semen (ZMS), and Hovenia Acerba Semen (HAS) has become challenging. The chromatic and textural properties of ZSS, ZMS, and HAS are analyzed in this study. Color features were extracted via RGB, CIELAB, and HSI [...] Read more.
The authentication of Ziziphi Spinosae Semen (ZSS), Ziziphi Mauritianae Semen (ZMS), and Hovenia Acerba Semen (HAS) has become challenging. The chromatic and textural properties of ZSS, ZMS, and HAS are analyzed in this study. Color features were extracted via RGB, CIELAB, and HSI spaces, whereas texture information was analyzed via the gray-level co-occurrence matrix (GLCM) and Law’s texture feature analysis. The results revealed significant differences in color and texture among the samples. The fire–ice ion dimensionality reduction algorithm effectively fuses these features, enhancing their differentiation ability. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) confirmed the algorithm’s effectiveness, with variable importance in projection analysis (VIP analysis) (VIP > 1, p < 0.05) highlighting significant differences, particularly for the fire value, which is a key factor. To further validate the reliability of the algorithm, Back Propagation Neural Network (BP), Support Vector Machine (SVM), Deep Belief Network (DBN), and Random Forest (RF) were used for reverse validation, and the accuracy of the training set and test set reached 98.83–100% and 95.89–99.32%, respectively. The method provides a simple, low-cost, and high-precision tool for the fast and nondestructive detection of food authenticity. Full article
Show Figures

Figure 1

17 pages, 2785 KB  
Article
Synergistic Protective Effect of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Mixture in the Ethanol-Induced Hepatotoxicity
by Kyung-Hwan Jegal, Hye-Rim Park, Beom-Rak Choi, Jae-Kwang Kim and Sae-Kwang Ku
Antioxidants 2023, 12(8), 1602; https://doi.org/10.3390/antiox12081602 - 11 Aug 2023
Cited by 9 | Viewed by 2946
Abstract
Schizandrae Fructus (SF), fruits of Schisandra chinensis (Turcz.) Baill. and Hoveniae Semen cum Fructus (HSCF), the dried peduncle of Hovenia dulcis Thunb., have long been used for alcohol detoxification in the traditional medicine of Korea and China. In the current study, we aimed [...] Read more.
Schizandrae Fructus (SF), fruits of Schisandra chinensis (Turcz.) Baill. and Hoveniae Semen cum Fructus (HSCF), the dried peduncle of Hovenia dulcis Thunb., have long been used for alcohol detoxification in the traditional medicine of Korea and China. In the current study, we aimed to evaluate the potential synergistic hepatoprotective effect of a combination mixture (MSH) comprising fermented SF pomace (fSFP) and HSCF hot water extracts at a 1:1 (w:w) ratio against ethanol-induced liver toxicity. Subacute ethanol-mediated hepatotoxicity was induced by the oral administration of ethanol (5 g/kg) in C57BL/6J mice once daily for 14 consecutive days. One hour after each ethanol administration, MSH (50, 100, and 200 mg/kg) was also orally administered daily. MSH administration significantly reduced the serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase. Histological observation indicated that MSH administration synergistically and significantly decreased the fatty changed region of hepatic parenchyma and the formation of lipid droplet in hepatocytes. Moreover, MSH significantly attenuated the hepatic triglyceride accumulation through reducing lipogenesis genes expression and increasing fatty acid oxidation genes expression. In addition, MSH significantly inhibited protein nitrosylation and lipid peroxidation by lowering cytochrome P450 2E1 enzyme activity and restoring the glutathione level, superoxide dismutase and catalase activity in liver. Furthermore, MSH synergistically decreased the mRNA level of tumor necrosis factor-α in the hepatic tissue. These findings indicate that MSH has potential for preventing alcoholic liver disease through inhibiting hepatic steatosis, oxidative stress, and inflammation. Full article
(This article belongs to the Special Issue Alcohol-Induced Oxidative Stress in Health and Disease)
Show Figures

Figure 1

19 pages, 19512 KB  
Article
A Mixture of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Synergistically Protects against Oxidative Stress-Mediated Liver Injury
by Jang-Soo Kim, Kyung-Hwan Jegal, Hye-Rim Park, Beom-Rak Choi, Jae-Kwang Kim and Sae-Kwang Ku
Antioxidants 2023, 12(8), 1556; https://doi.org/10.3390/antiox12081556 - 3 Aug 2023
Cited by 3 | Viewed by 2436
Abstract
Schizandrae Fructus (SF) and Hoveniae Semen cum Fructus (HSCF) have long been used as medicinal herbs for treating various diseases in Asian traditional medicine. In the current study, we investigated the protective effect of fermented SF pomace and HSCF extract 1:1 (w [...] Read more.
Schizandrae Fructus (SF) and Hoveniae Semen cum Fructus (HSCF) have long been used as medicinal herbs for treating various diseases in Asian traditional medicine. In the current study, we investigated the protective effect of fermented SF pomace and HSCF extract 1:1 (w:w) combination mixture (MSH) against carbon tetrachloride (CCl4)-induced acute liver injury mice. After MSH (50–200 mg/kg) oral administration for 7 consecutive days, animals were injected intraperitoneally with CCl4 (0.5 mL/kg). Histopathological observation revealed that administration of MSH synergistically decreased the degeneration of hepatocytes and the infiltration of inflammatory cells induced by CCl4. Moreover, MSH administration reduced the activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase in serum, and mitigated apoptotic cell death in hepatic parenchyma. In addition, MSH alleviated CCl4-mediated lipid peroxidation by restoring endogenous antioxidants capacities including glutathione contents, superoxide dismutase, and catalase activities. In vitro assessments using tert-butyl hydroperoxide-induced oxidative stress in HepG2 cells revealed that MSH protects hepatocytes by lowering ROS generation and lipid peroxidation via upregulating the transcriptional activity of nuclear factor erythroid-2-related factor 2 and the expression of antioxidant genes. Furthermore, MSH synergistically attenuated the expression of proinflammatory cytokines in CCl4-injured liver and lipopolysaccharide-stimulated RAW 264.7 cells. Taken together, these findings suggest that MSH has the potential to prevent acute liver damage by effectively suppressing oxidative stress and inflammation. Full article
(This article belongs to the Special Issue Antioxidants in the Protection of Liver Injuries)
Show Figures

Figure 1

18 pages, 3213 KB  
Article
Multi-Index Comprehensive Assessment Optimized Critical Flavonoids Extraction from Semen Hoveniae and Their In Vitro Digestive Behavior Evaluation
by Xiaomei Fu, Yan Tan, Meng Shi, Chaoxi Zeng and Si Qin
Foods 2023, 12(4), 773; https://doi.org/10.3390/foods12040773 - 10 Feb 2023
Cited by 5 | Viewed by 2941
Abstract
Critical flavonoids from Semen Hoveniae have huge potential bioactivities on hypoglycemic. A multi-index comprehensive assessment based on Analytic Hierarchy Process (AHP) method was performed to optimize the extraction process of flavonoids from Semen Hoveniae, which taking dihydromyricetin, taxifolin, myricetin and quercetin as [...] Read more.
Critical flavonoids from Semen Hoveniae have huge potential bioactivities on hypoglycemic. A multi-index comprehensive assessment based on Analytic Hierarchy Process (AHP) method was performed to optimize the extraction process of flavonoids from Semen Hoveniae, which taking dihydromyricetin, taxifolin, myricetin and quercetin as indexes, and, then, an in vitro simulated gastrointestinal digestion model was established to investigate the changes of flavonoids contents and their antioxidant capacity before and after digestion. The results showed that three influence factors acted significantly with the order of ethanol concentration > solid-liquid ratio > ultrasound time. The optimized extraction parameters were as follows: 1:37 w/v of solid-liquid ratio, 68% of ethanol concentration and 45 min for ultrasonic time. During in vitro digestion, the order of remaining ratio of four flavonoids in the extract was dihydromyricetin > taxifolin > myricetin > quercetin in gastric digestion, and remaining ratio of taxifolin was 34.87% while others were restructured in intestinal digestion. Furthermore, the 1,1-dipheny-2-picryhydrazyl free radical (DPPH ·) scavenging ability and oxygen radical absorption capacity (ORAC) of extract were more stable in gastric digestion. After an hour’s intestinal digestion, the extract had no DPPH antioxidant capacity, but amazingly, its ORAC antioxidant capacity was retained or increased, which implied that substances were transformed and more hydrogen donors were produced. This study has carried out a preliminary discussion from the perspective of extraction and put forward a new research idea, to improve the in vivo bioavailability of the critical flavonoids from Semen Hoveniae. Full article
(This article belongs to the Special Issue Green Extraction, Separation, and Purification of Food Ingredients)
Show Figures

Figure 1

Back to TopTop