Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = SPDS chambers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2414 KB  
Article
Ectomycorrhizal Fungi Modulate Pedunculate Oak’s Heat Stress Responses through the Alternation of Polyamines, Phenolics, and Osmotica Content
by Marko Kebert, Saša Kostić, Eleonora Čapelja, Vanja Vuksanović, Srđan Stojnić, Anđelina Gavranović Markić, Milica Zlatković, Marina Milović, Vladislava Galović and Saša Orlović
Plants 2022, 11(23), 3360; https://doi.org/10.3390/plants11233360 - 3 Dec 2022
Cited by 12 | Viewed by 3729
Abstract
The physiological and biochemical responses of pedunculate oaks (Quercus robur L.) to heat stress (HS) and mycorrhization (individually as well in combination) were estimated. One-year-old Q. robur seedlings were grown under controlled conditions in a pot experiment, inoculated with a commercial inoculum [...] Read more.
The physiological and biochemical responses of pedunculate oaks (Quercus robur L.) to heat stress (HS) and mycorrhization (individually as well in combination) were estimated. One-year-old Q. robur seedlings were grown under controlled conditions in a pot experiment, inoculated with a commercial inoculum of ectomycorrhizal (ECM) fungi, and subjected to 72 h of heat stress (40 °C/30 °C day/night temperature, relative humidity 80%, photoperiod 16/8 h) in a climate chamber, and they were compared with seedlings that were grown at room temperature (RT). An in-depth analysis of certain well-known stress-related metrics such as proline, total phenolics, FRAP, ABTS, non-protein thiols, and lipid peroxidation revealed that mycorrhized oak seedlings were more resistant to heat stress (HS) than non-mycorrhized oaks. Additionally, levels of specific polyamines, total phenolics, flavonoids, and condensed tannins as well as osmotica (proline and glycine betaine) content were measured and compared between four treatments: plants inoculated with ectomycorrhizal fungi exposed to heat stress (ECM-HS) and those grown only at RT (ECM-RT) versus non-mycorrhized controls exposed to heat stress (NM-HS) and those grown only at room temperature (NM-RT). In ectomycorrhiza inoculated oak seedlings, heat stress led to not only a rise in proline, total phenols, FRAP, ABTS, non-protein thiols, and lipid peroxidation but a notable decrease in glycine betaine and flavonoids. Amounts of three main polyamines (putrescine, spermine, and spermidine) were quantified by using high-performance liquid chromatography coupled with fluorescent detection (HPLC/FLD) after derivatization with dansyl-chloride. Heat stress significantly increased putrescine levels in non-mycorrhized oak seedlings but had no effect on spermidine or spermine levels, whereas heat stress significantly increased all inspected polyamine levels in oak seedlings inoculated with ectomycorrhizal inoculum. Spermidine (SPD) and spermine (SPM) contents were significantly higher in ECM-inoculated plants during heat stress (approximately 940 and 630 nmol g−1 DW, respectively), whereas these compounds were present in smaller amounts in non-mycorrhized oak seedlings (between 510 and 550 nmol g−1 DW for Spd and between 350 and 450 nmol g−1 DW for Spm). These findings supported the priming and biofertilizer roles of ectomycorrhizal fungi in the mitigation of heat stress in pedunculate oaks by modification of polyamines, phenolics, and osmotica content. Full article
(This article belongs to the Special Issue Plant Responses to Interactions between Abiotic and Biotic Stresses)
Show Figures

Figure 1

17 pages, 5107 KB  
Article
Global Metabolites Reprogramming Induced by Spermine Contributing to Salt Tolerance in Creeping Bentgrass
by Zhou Li, Bizhen Cheng, Wei Liu, Guangyan Feng, Junming Zhao, Liquan Zhang and Yan Peng
Int. J. Mol. Sci. 2022, 23(9), 4472; https://doi.org/10.3390/ijms23094472 - 19 Apr 2022
Cited by 17 | Viewed by 3252
Abstract
Soil salinization has become a serious challenge to modern agriculture worldwide. The purpose of the study was to reveal salt tolerance induced by spermine (Spm) associated with alterations in water and redox homeostasis, photosynthetic performance, and global metabolites reprogramming based on analyses of [...] Read more.
Soil salinization has become a serious challenge to modern agriculture worldwide. The purpose of the study was to reveal salt tolerance induced by spermine (Spm) associated with alterations in water and redox homeostasis, photosynthetic performance, and global metabolites reprogramming based on analyses of physiological responses and metabolomics in creeping bentgrass (Agrostis stolonifera). Plants pretreated with or without 0.5 mM Spm were subjected to salt stress induced by NaCl for 25 days in controlled growth chambers. Results showed that a prolonged period of salt stress caused a great deal of sodium (Na) accumulation, water loss, photoinhibition, and oxidative damage to plants. However, exogenous application of Spm significantly improved endogenous spermidine (Spd) and Spm contents, followed by significant enhancement of osmotic adjustment (OA), photosynthesis, and antioxidant capacity in leaves under salt stress. The Spm inhibited salt-induced Na accumulation but did not affect potassium (K) content. The analysis of metabolomics demonstrated that the Spm increased intermediate metabolites of γ-aminobutyric acid (GABA) shunt (GABA, glutamic acid, and alanine) and tricarboxylic acid (TCA) cycle (aconitic acid) under salt stress. In addition, the Spm also up-regulated the accumulation of multiple amino acids (glutamine, valine, isoleucine, methionine, serine, lysine, tyrosine, phenylalanine, and tryptophan), sugars (mannose, fructose, sucrose-6-phosphate, tagatose, and cellobiose), organic acid (gallic acid), and other metabolites (glycerol) in response to salt stress. These metabolites played important roles in OA, energy metabolism, signal transduction, and antioxidant defense under salt stress. More importantly, the Spm enhanced GABA shunt and the TCA cycle for energy supply in leaves. Current findings provide new evidence about the regulatory roles of the Spm in alleviating salt damage to plants associated with global metabolites reprogramming and metabolic homeostasis. Full article
Show Figures

Figure 1

15 pages, 2254 KB  
Article
Effects of Light Condition on Growth and Physiological Characteristics of the Endangered Species Sedirea japonica under RCP 6.0 Climate Change Scenarios
by Kyeong Cheol Lee, Jiae An, Jung Eun Hwang, Pyoung Beom Kim, Hyeong Bin Park, Seongjun Kim, Hwan Joon Park, Chang Woo Lee, Byoung-Doo Lee and Nam Young Kim
Plants 2021, 10(9), 1891; https://doi.org/10.3390/plants10091891 - 13 Sep 2021
Cited by 8 | Viewed by 2467
Abstract
This study was conducted to evaluate the physiological and growth responses of Sedirea japonica cultured in chambers under RCP 6.0 and different light conditions. S. japonica was grown in a soil–plant daylight system chamber under two treatments, a control (CO2 = 400 [...] Read more.
This study was conducted to evaluate the physiological and growth responses of Sedirea japonica cultured in chambers under RCP 6.0 and different light conditions. S. japonica was grown in a soil–plant daylight system chamber under two treatments, a control (CO2 = 400 ppm) and a climate change treatment (CCT) (CO2 = 650 ppm, temperature = control + 3 °C), and three different shading treatments (60%, 90%, and no-shading). S. japonica showed the characteristics of typical Crassulacean acid metabolism (CAM) plants. As the shading rate increased, it increased chlorophyll content, leaf area, and leaf dry weight to efficiently absorb and use light. The CCT had a lower CO2 absorption rate, stomatal conductance, and growth rate and slightly higher water utilization efficiency than the control. This was because stomatal closure occurred in the CCT to reduce water loss due to a relatively higher temperature. As CO2 fixation decreased and consumption increased due to respiration, the overall growth was inhibited. The CCT without shading revealed a dynamic photoinhibition phenomenon showing a significant increase in ABS/RC, TRo/RC, ETo/RC, and DIo/RC and a decrease in PI ABS and DF ABS. In this group, leaf, root, and total dry weight, chlorophyll content, and carotenoid content were the worst growth indices. Full article
Show Figures

Figure 1

Back to TopTop