Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = S-sulfhydration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2376 KiB  
Review
Role of Redox-Induced Protein Modifications in Spermatozoa in Health and Disease
by Chika Onochie, Keturah Evi and Cristian O’Flaherty
Antioxidants 2025, 14(6), 720; https://doi.org/10.3390/antiox14060720 - 12 Jun 2025
Viewed by 769
Abstract
Male infertility contributes to approximately half of all infertility cases, with most cases associated with oxidative stress. Spermatozoa depend on finely tuned redox signaling for critical processes such as capacitation, motility, and fertilization competence; however, their unique structural and metabolic features render them [...] Read more.
Male infertility contributes to approximately half of all infertility cases, with most cases associated with oxidative stress. Spermatozoa depend on finely tuned redox signaling for critical processes such as capacitation, motility, and fertilization competence; however, their unique structural and metabolic features render them particularly vulnerable to oxidative damage. Reversible oxidative modifications regulate enzymatic activity, signaling cascades, and structural stability, supporting normal sperm function, whereas irreversible oxidative damage impairs motility, acrosome reaction, and DNA integrity, contributing to male infertility. The intricate balance between physiological redox signaling and pathological oxidative stress demonstrates the potential of redox modifications as biomarkers for infertility diagnosis and as targets for antioxidant-based therapeutic interventions. This review explores the role of redox-induced protein modifications in sperm function, focusing on thiol oxidation, S-nitrosylation, sulfhydration, glutathionylation, CoAlation, and protein carbonylation. By uncovering the mechanisms of these redox modifications, we provide a framework for their modulation in the development of targeted redox interventions to improve male fertility. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

19 pages, 6883 KiB  
Article
Genome-Wide In Silico Analysis of 1-Aminocyclopropane-1-carboxylate oxidase (ACO) Gene Family in Rice (Oryza sativa L.)
by Jing Xia, Yingsheng Qiu, Wanli Li, Yingcheng Zhang, Linxin Liu, Yi Wang, Wangshu Mou and Dawei Xue
Plants 2024, 13(24), 3490; https://doi.org/10.3390/plants13243490 - 13 Dec 2024
Viewed by 1435
Abstract
The plant hormone ethylene elicits crucial regulatory effects on plant growth, development, and stress resistance. As the enzyme that catalyzes the final step of ethylene biosynthesis, 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO) plays a key role in precisely controlling ethylene production. However, the functional characterization [...] Read more.
The plant hormone ethylene elicits crucial regulatory effects on plant growth, development, and stress resistance. As the enzyme that catalyzes the final step of ethylene biosynthesis, 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO) plays a key role in precisely controlling ethylene production. However, the functional characterization of the ACO gene family in rice remains largely unexplored. In this study, we performed a phylogenetic analysis of seven OsACO genes (OsACO1OsACO7), which were classified into three subfamilies (Types I, II, and III). The members within the same clades exhibited similar tertiary structures and conserved protein motifs. We conducted inter/intraspecies covariance assays of OsACOs to elucidate their evolutionary and duplication events. Numerous cis-acting elements identified in OsACO promoter regions are associated with development, hormonal stimuli, and environmental responses. The expression assay by RT-qPCR revealed that OsACO genes exhibited tissue-specific expression and were significantly altered under various abiotic stresses, indicating their potential involvement in these processes regulated at the transcriptional level. Additionally, we predicted candidate-targeting miRNAs and identified putative cysteine sites of S-nitrosylation (SNO) and S-sulfhydration (SSH) in OsACOs, providing insights into their post-transcriptional and post-translational regulatory mechanisms. These findings pave the way for the further investigation of OsACO functions and their potential applications in improving rice growth and stress resilience by modulating ethylene biosynthesis. Full article
(This article belongs to the Special Issue Physiological and Molecular Responses for Stress Tolerance in Rice)
Show Figures

Figure 1

18 pages, 2118 KiB  
Systematic Review
Hydrogen Sulfide and Gut Microbiota: Their Synergistic Role in Modulating Sirtuin Activity and Potential Therapeutic Implications for Neurodegenerative Diseases
by Constantin Munteanu, Gelu Onose, Mădălina Poștaru, Marius Turnea, Mariana Rotariu and Anca Irina Galaction
Pharmaceuticals 2024, 17(11), 1480; https://doi.org/10.3390/ph17111480 - 4 Nov 2024
Cited by 10 | Viewed by 4915
Abstract
The intricate relationship between hydrogen sulfide (H2S), gut microbiota, and sirtuins (SIRTs) can be seen as a paradigm axis in maintaining cellular homeostasis, modulating oxidative stress, and promoting mitochondrial health, which together play a pivotal role in aging and neurodegenerative diseases. [...] Read more.
The intricate relationship between hydrogen sulfide (H2S), gut microbiota, and sirtuins (SIRTs) can be seen as a paradigm axis in maintaining cellular homeostasis, modulating oxidative stress, and promoting mitochondrial health, which together play a pivotal role in aging and neurodegenerative diseases. H2S, a gasotransmitter synthesized endogenously and by specific gut microbiota, acts as a potent modulator of mitochondrial function and oxidative stress, protecting against cellular damage. Through sulfate-reducing bacteria, gut microbiota influences systemic H2S levels, creating a link between gut health and metabolic processes. Dysbiosis, or an imbalance in microbial populations, can alter H2S production, impair mitochondrial function, increase oxidative stress, and heighten inflammation, all contributing factors in neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Sirtuins, particularly SIRT1 and SIRT3, are NAD+-dependent deacetylases that regulate mitochondrial biogenesis, antioxidant defense, and inflammation. H2S enhances sirtuin activity through post-translational modifications, such as sulfhydration, which activate sirtuin pathways essential for mitigating oxidative damage, reducing inflammation, and promoting cellular longevity. SIRT1, for example, deacetylates NF-κB, reducing pro-inflammatory cytokine expression, while SIRT3 modulates key mitochondrial enzymes to improve energy metabolism and detoxify reactive oxygen species (ROS). This synergy between H2S and sirtuins is profoundly influenced by the gut microbiota, which modulates systemic H2S levels and, in turn, impacts sirtuin activation. The gut microbiota–H2S–sirtuin axis is also essential in regulating neuroinflammation, which plays a central role in the pathogenesis of neurodegenerative diseases. Pharmacological interventions, including H2S donors and sirtuin-activating compounds (STACs), promise to improve these pathways synergistically, providing a novel therapeutic approach for neurodegenerative conditions. This suggests that maintaining gut microbiota diversity and promoting optimal H2S levels can have far-reaching effects on brain health. Full article
Show Figures

Figure 1

20 pages, 5597 KiB  
Article
Isorhamnetin Alleviates Renal Fibrosis by Inducing Endogenous Hydrogen Sulfide and Regulating Thiol-Based Redox State in Obstructed Kidneys
by Zhen Zhang, Haiyan Zhang, Jianyu Shi, Zheng Wang, Yanni Liang, Jingao Yu, Hongbo Wang, Zhongxing Song, Zhishu Tang, Dongbo Zhang and Jian Yao
Biomolecules 2024, 14(10), 1233; https://doi.org/10.3390/biom14101233 - 29 Sep 2024
Cited by 7 | Viewed by 1757
Abstract
Isorhamnetin (ISO) is an active flavonoid compound mainly isolated from the fruits of Hippophae rhamnoides L. and the leaves of Ginkgo biloba L. Previous studies have revealed the antifibrotic action of ISO in the liver and lungs, although its potential protective effects against [...] Read more.
Isorhamnetin (ISO) is an active flavonoid compound mainly isolated from the fruits of Hippophae rhamnoides L. and the leaves of Ginkgo biloba L. Previous studies have revealed the antifibrotic action of ISO in the liver and lungs, although its potential protective effects against renal fibrosis and the underlying mechanisms are still poorly understood. Given that many actions of ISO could be similarly attained by hydrogen sulfide (H2S), we speculated that ISO may work through the induction of endogenous H2S. To test the hypothesis, we established the unilateral ureteral obstruction (UUO) renal fibrosis rat model and transforming growth factor-β1(TGF-β1)-induced fibrosis in cultured renal tubular cells. ISO treatment inhibited epithelial–mesenchymal transition (EMT) formation, decreased extracellular matrix (ECM) deposition, and relieved renal fibrosis. Further analysis revealed that ISO stimulated the expression of the H2S-synthesizing enzyme cystathionine lyase (CSE) and cystathionine beta-synthase (CBS), and promoted H2S production in vivo and in vitro. The elevated H2S attenuated oxidative stress and elevated the thiol level. It induced Keap1 sulfhydration, disrupted Keap1-Nrf2 interaction, and promoted the entry of Nrf2 into the nucleus. Finally, we found that circulating H2S mainly derived from the liver, and not the kidney. Collectively, our study revealed that ISO alleviated renal fibrosis by inducing endogenous H2S and regulating Keap1-Nrf2 interaction through sulfhydration of Keap1. Endogenous H2S could be an important mediator underlying the pharmacological actions of ISO. Due to the multifunctional properties of H2S, the H2S-inducing nature of ISO could be exploited to treat various diseases. Full article
Show Figures

Graphical abstract

22 pages, 919 KiB  
Review
Signaling Paradigms of H2S-Induced Vasodilation: A Comprehensive Review
by Constantin Munteanu, Cristina Popescu, Andreea-Iulia Vlădulescu-Trandafir and Gelu Onose
Antioxidants 2024, 13(10), 1158; https://doi.org/10.3390/antiox13101158 - 25 Sep 2024
Cited by 17 | Viewed by 3289
Abstract
Hydrogen sulfide (H2S), a gas traditionally considered toxic, is now recognized as a vital endogenous signaling molecule with a complex physiology. This comprehensive study encompasses a systematic literature review that explores the intricate mechanisms underlying H2S-induced vasodilation. The vasodilatory [...] Read more.
Hydrogen sulfide (H2S), a gas traditionally considered toxic, is now recognized as a vital endogenous signaling molecule with a complex physiology. This comprehensive study encompasses a systematic literature review that explores the intricate mechanisms underlying H2S-induced vasodilation. The vasodilatory effects of H2S are primarily mediated by activating ATP-sensitive potassium (K_ATP) channels, leading to membrane hyperpolarization and subsequent relaxation of vascular smooth muscle cells (VSMCs). Additionally, H2S inhibits L-type calcium channels, reducing calcium influx and diminishing VSMC contraction. Beyond ion channel modulation, H2S profoundly impacts cyclic nucleotide signaling pathways. It stimulates soluble guanylyl cyclase (sGC), increasing the production of cyclic guanosine monophosphate (cGMP). Elevated cGMP levels activate protein kinase G (PKG), which phosphorylates downstream targets like vasodilator-stimulated phosphoprotein (VASP) and promotes smooth muscle relaxation. The synergy between H2S and nitric oxide (NO) signaling further amplifies vasodilation. H2S enhances NO bioavailability by inhibiting its degradation and stimulating endothelial nitric oxide synthase (eNOS) activity, increasing cGMP levels and potent vasodilatory responses. Protein sulfhydration, a post-translational modification, plays a crucial role in cell signaling. H2S S-sulfurates oxidized cysteine residues, while polysulfides (H2Sn) are responsible for S-sulfurating reduced cysteine residues. Sulfhydration of key proteins like K_ATP channels and sGC enhances their activity, contributing to the overall vasodilatory effect. Furthermore, H2S interaction with endothelium-derived hyperpolarizing factor (EDHF) pathways adds another layer to its vasodilatory mechanism. By enhancing EDHF activity, H2S facilitates the hyperpolarization and relaxation of VSMCs through gap junctions between endothelial cells and VSMCs. Recent findings suggest that H2S can also modulate transient receptor potential (TRP) channels, particularly TRPV4 channels, in endothelial cells. Activating these channels by H2S promotes calcium entry, stimulating the production of vasodilatory agents like NO and prostacyclin, thereby regulating vascular tone. The comprehensive understanding of H2S-induced vasodilation mechanisms highlights its therapeutic potential. The multifaceted approach of H2S in modulating vascular tone presents a promising strategy for developing novel treatments for hypertension, ischemic conditions, and other vascular disorders. The interaction of H2S with ion channels, cyclic nucleotide signaling, NO pathways, ROS (Reactive Oxygen Species) scavenging, protein sulfhydration, and EDHF underscores its complexity and therapeutic relevance. In conclusion, the intricate signaling paradigms of H2S-induced vasodilation offer valuable insights into its physiological role and therapeutic potential, promising innovative approaches for managing various vascular diseases through the modulation of vascular tone. Full article
(This article belongs to the Special Issue Hydrogen Sulfide Signaling in Biological Systems)
Show Figures

Figure 1

16 pages, 1112 KiB  
Review
Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression
by Constantin Munteanu, Anca Irina Galaction, Mădălina Poștaru, Mariana Rotariu, Marius Turnea and Corneliu Dan Blendea
Biomedicines 2024, 12(9), 1951; https://doi.org/10.3390/biomedicines12091951 - 26 Aug 2024
Cited by 7 | Viewed by 2730
Abstract
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and [...] Read more.
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H₂S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H₂S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H₂S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H₂S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H₂S reduces MMP activation, contributing to plaque stability and vascular remodeling. H₂S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H₂S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H₂S-based therapies for clinical application in atherosclerosis. Full article
Show Figures

Figure 1

20 pages, 2160 KiB  
Review
Hydrogen Sulfide (H2S)/Polysulfides (H2Sn) Signalling and TRPA1 Channels Modification on Sulfur Metabolism
by Hideo Kimura
Biomolecules 2024, 14(1), 129; https://doi.org/10.3390/biom14010129 - 19 Jan 2024
Cited by 18 | Viewed by 3466
Abstract
Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) produced by enzymes play a role as signalling molecules regulating neurotransmission, vascular tone, cytoprotection, inflammation, oxygen sensing, and energy formation. H2Sn, which have additional [...] Read more.
Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) produced by enzymes play a role as signalling molecules regulating neurotransmission, vascular tone, cytoprotection, inflammation, oxygen sensing, and energy formation. H2Sn, which have additional sulfur atoms to H2S, and other S-sulfurated molecules such as cysteine persulfide and S-sulfurated cysteine residues of proteins, are produced by enzymes including 3-mercaptopyruvate sulfurtransferase (3MST). H2Sn are also generated by the chemical interaction of H2S with NO, or to a lesser extent with H2O2. S-sulfuration (S-sulfhydration) has been proposed as a mode of action of H2S and H2Sn to regulate the activity of target molecules. Recently, we found that H2S/H2S2 regulate the release of neurotransmitters, such as GABA, glutamate, and D-serine, a co-agonist of N-methyl-D-aspartate (NMDA) receptors. H2S facilitates the induction of hippocampal long-term potentiation, a synaptic model of memory formation, by enhancing the activity of NMDA receptors, while H2S2 achieves this by activating transient receptor potential ankyrin 1 (TRPA1) channels in astrocytes, potentially leading to the activation of nearby neurons. The recent findings show the other aspects of TRPA1 channels—that is, the regulation of the levels of sulfur-containing molecules and their metabolizing enzymes. Disturbance of the signalling by H2S/H2Sn has been demonstrated to be involved in various diseases, including cognitive and psychiatric diseases. The physiological and pathophysiological roles of these molecules will be discussed. Full article
Show Figures

Figure 1

19 pages, 1321 KiB  
Review
Protective Roles of Hydrogen Sulfide in Alzheimer’s Disease and Traumatic Brain Injury
by Bindu D. Paul and Andrew A. Pieper
Antioxidants 2023, 12(5), 1095; https://doi.org/10.3390/antiox12051095 - 13 May 2023
Cited by 41 | Viewed by 6200
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) critically modulates a plethora of physiological processes across evolutionary boundaries. These include responses to stress and other neuromodulatory effects that are typically dysregulated in aging, disease, and injury. H2S has a particularly [...] Read more.
The gaseous signaling molecule hydrogen sulfide (H2S) critically modulates a plethora of physiological processes across evolutionary boundaries. These include responses to stress and other neuromodulatory effects that are typically dysregulated in aging, disease, and injury. H2S has a particularly prominent role in modulating neuronal health and survival under both normal and pathologic conditions. Although toxic and even fatal at very high concentrations, emerging evidence has also revealed a pronounced neuroprotective role for lower doses of endogenously generated or exogenously administered H2S. Unlike traditional neurotransmitters, H2S is a gas and, therefore, is unable to be stored in vesicles for targeted delivery. Instead, it exerts its physiologic effects through the persulfidation/sulfhydration of target proteins on reactive cysteine residues. Here, we review the latest discoveries on the neuroprotective roles of H2S in Alzheimer’s disease (AD) and traumatic brain injury, which is one the greatest risk factors for AD. Full article
(This article belongs to the Special Issue Reactive Sulfur Species in Biology and Medicine)
Show Figures

Figure 1

17 pages, 3091 KiB  
Article
TNF-α-Mediated Endothelial Cell Apoptosis Is Rescued by Hydrogen Sulfide
by Lorena Diaz Sanchez, Lissette Sanchez-Aranguren, Keqing Wang, Corinne M. Spickett, Helen R. Griffiths and Irundika H. K. Dias
Antioxidants 2023, 12(3), 734; https://doi.org/10.3390/antiox12030734 - 16 Mar 2023
Cited by 12 | Viewed by 3442
Abstract
Endothelial dysfunction is implicated in the development and aggravation of cardiovascular complications. Among the endothelium-released vasoactive factors, hydrogen sulfide (H2S) has been investigated for its beneficial effects on the vasculature through anti-inflammatory and redox-modulating regulatory mechanisms. Reduced H2S bioavailability [...] Read more.
Endothelial dysfunction is implicated in the development and aggravation of cardiovascular complications. Among the endothelium-released vasoactive factors, hydrogen sulfide (H2S) has been investigated for its beneficial effects on the vasculature through anti-inflammatory and redox-modulating regulatory mechanisms. Reduced H2S bioavailability is reported in chronic diseases such as cardiovascular disease, diabetes, atherosclerosis and preeclampsia, suggesting the value of investigating mechanisms, by which H2S acts as a vasoprotective gasotransmitter. We explored whether the protective effects of H2S were linked to the mitochondrial health of endothelial cells and the mechanisms by which H2S rescues apoptosis. Here, we demonstrate that endothelial dysfunction induced by TNF-α increased endothelial oxidative stress and induced apoptosis via mitochondrial cytochrome c release and caspase activation over 24 h. TNF-α also affected mitochondrial morphology and altered the mitochondrial network. Post-treatment with the slow-releasing H2S donor, GYY4137, alleviated oxidising redox state, decreased pro-caspase 3 activity, and prevented endothelial apoptosis caused by TNF-α alone. In addition, exogenous GYY4137 enhanced S-sulfhydration of pro-caspase 3 and improved mitochondrial health in TNF-α exposed cells. These data provide new insights into molecular mechanisms for cytoprotective effects of H2S via the mitochondrial-driven pathway. Full article
(This article belongs to the Special Issue Reactive Sulfur Species in Oxidative Stress)
Show Figures

Figure 1

18 pages, 1518 KiB  
Review
Advances of H2S in Regulating Neurodegenerative Diseases by Preserving Mitochondria Function
by Lina Zhou and Qiang Wang
Antioxidants 2023, 12(3), 652; https://doi.org/10.3390/antiox12030652 - 6 Mar 2023
Cited by 32 | Viewed by 3716
Abstract
Neurotoxicity is induced by different toxic substances, including environmental chemicals, drugs, and pathogenic toxins, resulting in oxidative damage and neurodegeneration in mammals. The nervous system is extremely vulnerable to oxidative stress because of its high oxygen demand. Mitochondria are the main source of [...] Read more.
Neurotoxicity is induced by different toxic substances, including environmental chemicals, drugs, and pathogenic toxins, resulting in oxidative damage and neurodegeneration in mammals. The nervous system is extremely vulnerable to oxidative stress because of its high oxygen demand. Mitochondria are the main source of ATP production in the brain neuron, and oxidative stress-caused mitochondrial dysfunction is implicated in neurodegenerative diseases. H2S was initially identified as a toxic gas; however, more recently, it has been recognized as a neuromodulator as well as a neuroprotectant. Specifically, it modulates mitochondrial activity, and H2S oxidation in mitochondria produces various reactive sulfur species, thus modifying proteins through sulfhydration. This review focused on highlighting the neuron modulation role of H2S in regulating neurodegenerative diseases through anti-oxidative, anti-inflammatory, anti-apoptotic and S-sulfhydration, and emphasized the importance of H2S as a therapeutic molecule for neurological diseases. Full article
(This article belongs to the Special Issue Oxidative Stress-Induced Neurotoxicity and Mitochondrial Dysfunction)
Show Figures

Figure 1

17 pages, 2856 KiB  
Article
H2S- and Redox-State-Mediated PTP1B S-Sulfhydration in Insulin Signaling
by Yu-Chin Lin, Wan-Ting Zeng and Der-Yen Lee
Int. J. Mol. Sci. 2023, 24(3), 2898; https://doi.org/10.3390/ijms24032898 - 2 Feb 2023
Cited by 8 | Viewed by 2542
Abstract
Because hydrogen sulfide (H2S) is classified as a gaseous signaling molecule, protein S-sulfhydration is known to be one of the mechanisms by which H2S signals are conducted. PTP1B, a negative regulator in insulin signaling, has been found to be [...] Read more.
Because hydrogen sulfide (H2S) is classified as a gaseous signaling molecule, protein S-sulfhydration is known to be one of the mechanisms by which H2S signals are conducted. PTP1B, a negative regulator in insulin signaling, has been found to be S-sulfhydrated at Cys215-SH to form Cys215-SSH in response to endoplasmic reticulum (ER) stress. Therefore, we aimed to understand the change in PTP1B S-sulfhydration and cellular redox homeostasis in response to insulin stimulation. We demonstrated a feasible PEG-switch method to determine the levels of PTP1B S-sulfhydration. According to the results obtained from HEK293T and MDA-MB-231 cells, insulin induced a change in PTP1B S-sulfhydration that was similar to the change in Insulin receptor substrate 1 (IRS1) phosphorylation in both cell lines. However, insulin-induced PTP1B S-sulfhydration and IRS1 phosphorylation were only significantly affected by metformin in HEK293T cells. Insulin also induced an increase in reactive oxygen species (ROS) in both cell lines. However, the level of H2S, GSH, and GSSG was only significantly affected by insulin and metformin in HEK293T cells. HEK293T cells maintained high levels of H2S and cysteine, but low levels of GSSG and GSH in general compared to MDA-MB-231 cells. From these findings, we suggest that PTP1B activity is modulated by H2S and redox-regulated S-sulfhydration during insulin signaling. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 5401 KiB  
Article
Hydrogen Sulfide Regulates SERCA2a Ubiquitylation via Muscle RING Finger-1 S-Sulfhydration to Affect Cardiac Contractility in db/db Mice
by Shuo Peng, Dechao Zhao, Qianzhu Li, Mengyi Wang, Shiwu Zhang, Kemiao Pang, Jiayi Huang, Fanghao Lu, He Chen and Weihua Zhang
Cells 2022, 11(21), 3465; https://doi.org/10.3390/cells11213465 - 2 Nov 2022
Cited by 9 | Viewed by 2964
Abstract
Hydrogen sulfide (H2S), as a gasotransmitter, is involved in various pathophysiological processes. Diabetic cardiomyopathy (DCM) is a major complication of diabetes mellitus (DM), which leads to structural and functional abnormalities of the myocardium and eventually causes heart failure (HF). Systolic and [...] Read more.
Hydrogen sulfide (H2S), as a gasotransmitter, is involved in various pathophysiological processes. Diabetic cardiomyopathy (DCM) is a major complication of diabetes mellitus (DM), which leads to structural and functional abnormalities of the myocardium and eventually causes heart failure (HF). Systolic and diastolic dysfunction are fundamental features of heart failure. SERCA2a, as a key enzyme for calcium transport in the endoplasmic reticulum (ER), affects the process of myocardial relaxation and contraction. H2S can protect the cardiac function against diabetic hearts, however, its mechanisms are unclear. This study found that exogenous H2S affects cellular calcium transport by regulating the H2S/MuRF1/SERCA2a/cardiac contractile pathway. Our results showed that, compared with the db/db mice, exogenous H2S restored the protein expression levels of CSE and SERCA2a, and the activity of SERCA2a, while reducing cytosolic calcium concentrations and MuRF1 expression. We demonstrated that MuRF1 could interact with SERCA2a via co-immunoprecipitation. Using LC-MS/MS protein ubiquitylation analysis, we identified 147 proteins with increased ubiquitination levels, including SERCA2a, in the cardiac tissues of the db/db mice compared with NaHS-treated db/db mice. Our studies further revealed that NaHS administration modified MuRF1 S-sulfhydration and enhanced the activity and expression of SERCA2a. Under hyperglycemia and hyperlipidemia, overexpression of the MuRF1-Cys44 mutant plasmid reduced the S-sulfhydration level of MuRF1 and decreased the ubiquitination level of SERCA2a and the intracellular Ca2+ concentration. These findings suggested that H2S modulates SERCA2a ubiquitination through MuRF1 S-sulfhydration of Cys44 to prevent decreased myocardial contractility due to increased cytosolic calcium. Full article
Show Figures

Figure 1

14 pages, 2179 KiB  
Article
Hydrogen Sulfide Donor GYY4137 Rescues NRF2 Activation in Respiratory Syncytial Virus Infection
by Aline Haas de Mello, Tianshuang Liu, Roberto P. Garofalo and Antonella Casola
Antioxidants 2022, 11(7), 1410; https://doi.org/10.3390/antiox11071410 - 21 Jul 2022
Cited by 12 | Viewed by 2919
Abstract
Respiratory syncytial virus (RSV) can cause severe respiratory illness in infants, immunocompromised, and older adults. Despite its burden, no vaccine or specific treatment is available. RSV infection is associated with increased reactive oxygen species (ROS) production, degradation of the transcription factor nuclear factor [...] Read more.
Respiratory syncytial virus (RSV) can cause severe respiratory illness in infants, immunocompromised, and older adults. Despite its burden, no vaccine or specific treatment is available. RSV infection is associated with increased reactive oxygen species (ROS) production, degradation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), and decreased antioxidant enzymes (AOEs), leading to oxidative damage and lung injury. Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays a physiological role in numerous cellular processes and a protective role in multiple pathological conditions, displaying vasoactive, cytoprotective, anti-inflammatory, and antioxidant activities. H2S can promote NRF2 activation through the sulfhydration of Kelch-like ECH-associated protein 1, the cytoplasmic repressor of NRF2. Here we investigated whether increasing cellular H2S levels could rescue NRF2 and NRF2-dependent gene expression in RSV-infected primary airway epithelial cells. We found that treatment with the H2S donor GYY4137 significantly increased NRF2 levels and AOEs gene expression by decreasing KEAP1 levels, and by modulating pathways involved in RSV-induced NRF2 degradation, such as NRF2 ubiquitination, and promyelocytic leukemia (PML) protein levels. These results suggest that the administration of exogenous H2S can positively impact the altered redox balance associated with RSV infection, which represents an important determinant of RSV-induced lung disease. Full article
Show Figures

Figure 1

20 pages, 3453 KiB  
Article
Sp1 S-Sulfhydration Induced by Hydrogen Sulfide Inhibits Inflammation via HDAC6/MyD88/NF-κB Signaling Pathway in Adjuvant-Induced Arthritis
by Meng Li, Wei Hu, Ran Wang, Zhaoyi Li, Yue Yu, Yue Zhuo, Yida Zhang, Zhou Wang, Yuanye Qiu, Keyuan Chen, Qian Ding, Wei Qi, Menglin Zhu and Yizhun Zhu
Antioxidants 2022, 11(4), 732; https://doi.org/10.3390/antiox11040732 - 7 Apr 2022
Cited by 22 | Viewed by 3761
Abstract
Histone deacetylase 6 (HDAC6) acts as a regulator of the nuclear factor kappa-B (NF-κB) signaling pathway by deacetylating the non-histone protein myeloid differentiation primary response 88 (MyD88) at lysine residues, which is an adapter protein for the Toll-like receptor (TLR) and interleukin (IL)-1β [...] Read more.
Histone deacetylase 6 (HDAC6) acts as a regulator of the nuclear factor kappa-B (NF-κB) signaling pathway by deacetylating the non-histone protein myeloid differentiation primary response 88 (MyD88) at lysine residues, which is an adapter protein for the Toll-like receptor (TLR) and interleukin (IL)-1β receptor. Over-activated immune responses, induced by infiltrated immune cells, excessively trigger the NF-κB signaling pathway in other effector cells and contribute to the development of rheumatoid arthritis (RA). It has also been reported that HDAC6 can promote the activation of the NF-κB signaling pathway. In the present study, we showed that HDAC6 protein level was increased in the synovium tissues of adjuvant-induced arthritis rats. In addition, hydrogen sulfide (H2S) donor S-propargyl-cysteine (SPRC) can inhibit HDAC6 expression and alleviate inflammatory response in vivo. In vitro study revealed that HDAC6 overexpression activated the NF-κB signaling pathway by deacetylating MyD88. Meanwhile, sodium hydrosulfide (NaHS) or HDAC6 inhibitor tubastatin A (tubA) suppressed the pro-inflammatory function of HDAC6. Furthermore, the reduced expression of HDAC6 appeared to result from transcriptional inhibition by S-sulfhydrating specificity protein 1 (Sp1), which is a transcription factor of HDAC6. Our results demonstrate that Sp1 can regulate HDAC6 expression, and S-sulfhydration of Sp1 by antioxidant molecular H2S ameliorates RA progression via the HDAC6/MyD88/NF-κB signaling pathway. Full article
Show Figures

Figure 1

19 pages, 1696 KiB  
Review
Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics
by Vitaliy B. Borisov and Elena Forte
Int. J. Mol. Sci. 2021, 22(23), 12688; https://doi.org/10.3390/ijms222312688 - 24 Nov 2021
Cited by 40 | Viewed by 6062
Abstract
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria—the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to [...] Read more.
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria—the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of FoF1-ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the bo3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects. Full article
Show Figures

Figure 1

Back to TopTop