Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ResNet 152 v2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 11689 KB  
Article
Enhanced Breast Cancer Diagnosis Using Multimodal Feature Fusion with Radiomics and Transfer Learning
by Nazmul Ahasan Maruf, Abdullah Basuhail and Muhammad Umair Ramzan
Diagnostics 2025, 15(17), 2170; https://doi.org/10.3390/diagnostics15172170 - 28 Aug 2025
Viewed by 1075
Abstract
Background: Breast cancer remains a critical public health problem worldwide and is a leading cause of cancer-related mortality. Optimizing clinical outcomes is contingent upon the early and precise detection of malignancies. Advances in medical imaging and artificial intelligence (AI), particularly in the fields [...] Read more.
Background: Breast cancer remains a critical public health problem worldwide and is a leading cause of cancer-related mortality. Optimizing clinical outcomes is contingent upon the early and precise detection of malignancies. Advances in medical imaging and artificial intelligence (AI), particularly in the fields of radiomics and deep learning (DL), have contributed to improvements in early detection methodologies. Nonetheless, persistent challenges, including limited data availability, model overfitting, and restricted generalization, continue to hinder performance. Methods: This study aims to overcome existing challenges by improving model accuracy and robustness through enhanced data augmentation and the integration of radiomics and deep learning features from the CBIS-DDSM dataset. To mitigate overfitting and improve model generalization, data augmentation techniques were applied. The PyRadiomics library was used to extract radiomics features, while transfer learning models were employed to derive deep learning features from the augmented training dataset. For radiomics feature selection, we compared multiple supervised feature selection methods, including RFE with random forest and logistic regression, ANOVA F-test, LASSO, and mutual information. Embedded methods with XGBoost, LightGBM, and CatBoost for GPUs were also explored. Finally, we integrated radiomics and deep features to build a unified multimodal feature space for improved classification performance. Based on this integrated set of radiomics and deep learning features, 13 pre-trained transfer learning models were trained and evaluated, including various versions of ResNet (50, 50V2, 101, 101V2, 152, 152V2), DenseNet (121, 169, 201), InceptionV3, MobileNet, and VGG (16, 19). Results: Among the evaluated models, ResNet152 achieved the highest classification accuracy of 97%, demonstrating the potential of this approach to enhance diagnostic precision. Other models, including VGG19, ResNet101V2, and ResNet101, achieved 96% accuracy, emphasizing the importance of the selected feature set in achieving robust detection. Conclusions: Future research could build on this work by incorporating Vision Transformer (ViT) architectures and leveraging multimodal data (e.g., clinical data, genomic information, and patient history). This could improve predictive performance and make the model more robust and adaptable to diverse data types. Ultimately, this approach has the potential to transform breast cancer detection, making it more accurate and interpretable. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

19 pages, 3213 KB  
Article
An Empirical Evaluation of a Novel Ensemble Deep Neural Network Model and Explainable AI for Accurate Segmentation and Classification of Ovarian Tumors Using CT Images
by Ashwini Kodipalli, Steven L. Fernandes and Santosh Dasar
Diagnostics 2024, 14(5), 543; https://doi.org/10.3390/diagnostics14050543 - 4 Mar 2024
Cited by 16 | Viewed by 3106
Abstract
Ovarian cancer is one of the leading causes of death worldwide among the female population. Early diagnosis is crucial for patient treatment. In this work, our main objective is to accurately detect and classify ovarian cancer. To achieve this, two datasets are considered: [...] Read more.
Ovarian cancer is one of the leading causes of death worldwide among the female population. Early diagnosis is crucial for patient treatment. In this work, our main objective is to accurately detect and classify ovarian cancer. To achieve this, two datasets are considered: CT scan images of patients with cancer and those without, and biomarker (clinical parameters) data from all patients. We propose an ensemble deep neural network model and an ensemble machine learning model for the automatic binary classification of ovarian CT scan images and biomarker data. The proposed model incorporates four convolutional neural network models: VGG16, ResNet 152, Inception V3, and DenseNet 101, with transformers applied for feature extraction. These extracted features are fed into our proposed ensemble multi-layer perceptron model for classification. Preprocessing and CNN tuning techniques such as hyperparameter optimization, data augmentation, and fine-tuning are utilized during model training. Our ensemble model outperforms single classifiers and machine learning algorithms, achieving a mean accuracy of 98.96%, a precision of 97.44%, and an F1-score of 98.7%. We compared these results with those obtained using features extracted by the UNet model, followed by classification with our ensemble model. The transformer demonstrated superior performance in feature extraction over the UNet, with a mean Dice score and mean Jaccard score of 0.98 and 0.97, respectively, and standard deviations of 0.04 and 0.06 for benign tumors and 0.99 and 0.98 with standard deviations of 0.01 for malignant tumors. For the biomarker data, the combination of five machine learning models—KNN, logistic regression, SVM, decision tree, and random forest—resulted in an improved accuracy of 92.8% compared to single classifiers. Full article
(This article belongs to the Special Issue Generative AI and Deep Learning in Medical Diagnostics)
Show Figures

Figure 1

13 pages, 3905 KB  
Article
Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network
by Gnanavel Sakkarvarthi, Godfrey Winster Sathianesan, Vetri Selvan Murugan, Avulapalli Jayaram Reddy, Prabhu Jayagopal and Mahmoud Elsisi
Electronics 2022, 11(21), 3618; https://doi.org/10.3390/electronics11213618 - 6 Nov 2022
Cited by 92 | Viewed by 11520
Abstract
Deep learning is a cutting-edge image processing method that is still relatively new but produces reliable results. Leaf disease detection and categorization employ a variety of deep learning approaches. Tomatoes are one of the most popular vegetables and can be found in every [...] Read more.
Deep learning is a cutting-edge image processing method that is still relatively new but produces reliable results. Leaf disease detection and categorization employ a variety of deep learning approaches. Tomatoes are one of the most popular vegetables and can be found in every kitchen in various forms, no matter the cuisine. After potato and sweet potato, it is the third most widely produced crop. The second-largest tomato grower in the world is India. However, many diseases affect the quality and quantity of tomato crops. This article discusses a deep-learning-based strategy for crop disease detection. A Convolutional-Neural-Network-based technique is used for disease detection and classification. Inside the model, two convolutional and two pooling layers are used. The results of the experiments show that the proposed model outperformed pre-trained InceptionV3, ResNet 152, and VGG19. The CNN model achieved 98% training accuracy and 88.17% testing accuracy. Full article
(This article belongs to the Special Issue Reliable Industry 4.0 Based on Machine Learning and IoT)
Show Figures

Figure 1

25 pages, 8623 KB  
Article
A Framework for Pedestrian Attribute Recognition Using Deep Learning
by Saadman Sakib, Kaushik Deb, Pranab Kumar Dhar and Oh-Jin Kwon
Appl. Sci. 2022, 12(2), 622; https://doi.org/10.3390/app12020622 - 10 Jan 2022
Cited by 8 | Viewed by 6051
Abstract
The pedestrian attribute recognition task is becoming more popular daily because of its significant role in surveillance scenarios. As the technological advances are significantly more than before, deep learning came to the surface of computer vision. Previous works applied deep learning in different [...] Read more.
The pedestrian attribute recognition task is becoming more popular daily because of its significant role in surveillance scenarios. As the technological advances are significantly more than before, deep learning came to the surface of computer vision. Previous works applied deep learning in different ways to recognize pedestrian attributes. The results are satisfactory, but still, there is some scope for improvement. The transfer learning technique is becoming more popular for its extraordinary performance in reducing computation cost and scarcity of data in any task. This paper proposes a framework that can work in surveillance scenarios to recognize pedestrian attributes. The mask R-CNN object detector extracts the pedestrians. Additionally, we applied transfer learning techniques on different CNN architectures, i.e., Inception ResNet v2, Xception, ResNet 101 v2, ResNet 152 v2. The main contribution of this paper is fine-tuning the ResNet 152 v2 architecture, which is performed by freezing layers, last 4, 8, 12, 14, 20, none, and all. Moreover, data balancing techniques are applied, i.e., oversampling, to resolve the class imbalance problem of the dataset and analysis of the usefulness of this technique is discussed in this paper. Our proposed framework outperforms state-of-the-art methods, and it provides 93.41% mA and 89.24% mA on the RAP v2 and PARSE100K datasets, respectively. Full article
(This article belongs to the Special Issue Deep Vision Algorithms and Applications)
Show Figures

Figure 1

15 pages, 1798 KB  
Article
On the Effect of Training Convolution Neural Network for Millimeter-Wave Radar-Based Hand Gesture Recognition
by Kang Zhang, Shengchang Lan and Guiyuan Zhang
Sensors 2021, 21(1), 259; https://doi.org/10.3390/s21010259 - 2 Jan 2021
Cited by 13 | Viewed by 3915
Abstract
The purpose of this paper was to investigate the effect of a training state-of-the-art convolution neural network (CNN) for millimeter-wave radar-based hand gesture recognition (MR-HGR). Focusing on the small training dataset problem in MR-HGR, this paper first proposed to transfer the knowledge with [...] Read more.
The purpose of this paper was to investigate the effect of a training state-of-the-art convolution neural network (CNN) for millimeter-wave radar-based hand gesture recognition (MR-HGR). Focusing on the small training dataset problem in MR-HGR, this paper first proposed to transfer the knowledge with the CNN models in computer vision to MR-HGR by fine-tuning the models with radar data samples. Meanwhile, for the different data modality in MR-HGR, a parameterized representation of temporal space-velocity (TSV) spectrogram was proposed as an integrated data modality of the time-evolving hand gesture features in the radar echo signals. The TSV spectrograms representing six common gestures in human–computer interaction (HCI) from nine volunteers were used as the data samples in the experiment. The evaluated models included ResNet with 50, 101, and 152 layers, DenseNet with 121, 161 and 169 layers, as well as light-weight MobileNet V2 and ShuffleNet V2, mostly proposed by many latest publications. In the experiment, not only self-testing (ST), but also more persuasive cross-testing (CT), were implemented to evaluate whether the fine-tuned models generalize to the radar data samples. The CT results show that the best fine-tuned models can reach to an average accuracy higher than 93% with a comparable ST average accuracy almost 100%. Moreover, in order to alleviate the problem caused by private gesture habits, an auxiliary test was performed by augmenting four shots of the gestures with the heaviest misclassifications into the training set. This enriching test is similar with the scenario that a tablet reacts to a new user. The results of two different volunteer in the enriching test shows that the average accuracy of the enriched gesture can be improved from 55.59% and 65.58% to 90.66% and 95.95% respectively. Compared with some baseline work in MR-HGR, the investigation by this paper can be beneficial in promoting MR-HGR in future industry applications and consumer electronic design. Full article
(This article belongs to the Special Issue Sensors for Posture and Human Motion Recognition)
Show Figures

Figure 1

Back to TopTop