Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Ren-2 transgenic rats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3900 KiB  
Article
Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart
by Matus Sykora, Vojtech Kratky, Libor Kopkan, Narcisa Tribulova and Barbara Szeiffova Bacova
Int. J. Mol. Sci. 2023, 24(4), 3490; https://doi.org/10.3390/ijms24043490 - 9 Feb 2023
Cited by 8 | Viewed by 2296
Abstract
The extracellular matrix (ECM) is a highly dynamic structure controlling the proper functioning of heart muscle. ECM remodeling with enhanced collagen deposition due to hemodynamic overload impairs cardiomyocyte adhesion and electrical coupling that contributes to cardiac mechanical dysfunction and arrhythmias. We aimed to [...] Read more.
The extracellular matrix (ECM) is a highly dynamic structure controlling the proper functioning of heart muscle. ECM remodeling with enhanced collagen deposition due to hemodynamic overload impairs cardiomyocyte adhesion and electrical coupling that contributes to cardiac mechanical dysfunction and arrhythmias. We aimed to explore ECM and connexin-43 (Cx43) signaling pathways in hemodynamically overloaded rat heart as well as the possible implication of angiotensin (1-7) (Ang (1-7)) to prevent/attenuate adverse myocardial remodeling. Male 8-week-old, normotensive Hannover Spraque–Dawley rats (HSD), hypertensive (mRen-2)27 transgenic rats (TGR) and Ang (1-7) transgenic rats (TGR(A1-7)3292) underwent aortocaval fistula (ACF) to produce volume overload. Five weeks later, biometric and heart tissue analyses were performed. Cardiac hypertrophy in response to volume overload was significantly less pronounced in TGR(A1-7)3292 compared to HSD rats. Moreover, a marker of fibrosis hydroxyproline was increased in both ventricles of volume-overloaded TGR while it was reduced in the Ang (1-7) right heart ventricle. The protein level and activity of MMP-2 were reduced in both ventricles of volume-overloaded TGR/TGR(A1-7)3292 compared to HSD. SMAD2/3 protein levels were decreased in the right ventricle of TGR(A1-7)3292 compared to HSD/TGR in response to volume overload. In parallel, Cx43 and pCx43 implicated in electrical coupling were increased in TGR(A1-7)3292 versus HSD/TGR. It can be concluded that Ang (1-7) exhibits cardio-protective and anti-fibrotic potential in conditions of cardiac volume overload. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Heart Diseases)
Show Figures

Figure 1

16 pages, 29149 KiB  
Article
Finerenone, a Non-Steroidal Mineralocorticoid Receptor Antagonist, Reduces Vascular Injury and Increases Regulatory T-Cells: Studies in Rodents with Diabetic and Neovascular Retinopathy
by Jack R. Jerome, Devy Deliyanti, Varaporn Suphapimol, Peter Kolkhof and Jennifer L. Wilkinson-Berka
Int. J. Mol. Sci. 2023, 24(3), 2334; https://doi.org/10.3390/ijms24032334 - 25 Jan 2023
Cited by 19 | Viewed by 5249
Abstract
Vision loss in diabetic retinopathy features damage to the blood–retinal barrier and neovascularization, with hypertension and the renin–angiotensin system (RAS) having causal roles. We evaluated if finerenone, a non-steroidal mineralocorticoid receptor (MR) antagonist, reduced vascular pathology and inflammation in diabetic and neovascular retinopathy. [...] Read more.
Vision loss in diabetic retinopathy features damage to the blood–retinal barrier and neovascularization, with hypertension and the renin–angiotensin system (RAS) having causal roles. We evaluated if finerenone, a non-steroidal mineralocorticoid receptor (MR) antagonist, reduced vascular pathology and inflammation in diabetic and neovascular retinopathy. Diabetic and hypertensive transgenic (mRen-2)27 rats overexpressing the RAS received the MR antagonist finerenone (10 mg/kg/day, oral gavage) or the angiotensin-converting enzyme inhibitor perindopril (10 mg/kg/day, drinking water) for 12 weeks. As retinal neovascularization does not develop in diabetic rodents, finerenone (5 mg/kg/day, i.p.) was evaluated in murine oxygen-induced retinopathy (OIR). Retinal vasculopathy was assessed by measuring gliosis, vascular leakage, neovascularization, and VEGF. Inflammation was investigated by quantitating retinal microglia/macrophages, pro-inflammatory mediators, and anti-inflammatory regulatory T-cells (Tregs). In diabetes, both treatments reduced systolic blood pressure, gliosis, vascular leakage, and microglial/macrophage density, but only finerenone lowered VEGF, ICAM-1, and IL-1ß. In OIR, finerenone reduced neovascularization, vascular leakage, and microglial density, and increased Tregs in the blood, spleen, and retina. Our findings, in the context of the FIDELIO-DKD and FIGARO-DKD trials reporting the benefits of finerenone on renal and cardiovascular outcomes in diabetic kidney disease, indicate the potential of finerenone as an effective oral treatment for diabetic retinopathy. Full article
Show Figures

Figure 1

18 pages, 1303 KiB  
Article
Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats
by Zuzana Honetschlägerová, Lucie Hejnová, Jiří Novotný, Aleš Marek and Luděk Červenka
Biomedicines 2021, 9(12), 1803; https://doi.org/10.3390/biomedicines9121803 - 30 Nov 2021
Cited by 8 | Viewed by 2318
Abstract
Detailed mechanism(s) of the beneficial effects of renal denervation (RDN) on the course of heart failure (HF) remain unclear. The study aimed to evaluate renal vascular responsiveness to angiotensin II (ANG II) and to characterize ANG II type 1 (AT1) and [...] Read more.
Detailed mechanism(s) of the beneficial effects of renal denervation (RDN) on the course of heart failure (HF) remain unclear. The study aimed to evaluate renal vascular responsiveness to angiotensin II (ANG II) and to characterize ANG II type 1 (AT1) and type 2 (AT2) receptors in the kidney of Ren-2 transgenic rats (TGR), a model of ANG II-dependent hypertension. HF was induced by volume overload using aorto-caval fistula (ACF). The studies were performed two weeks after RDN (three weeks after the creation of ACF), i.e., when non-denervated ACF TGR enter the decompensation phase of HF whereas those after RDN are still in the compensation phase. We found that ACF TGR showed lower renal blood flow (RBF) and its exaggerated response to intrarenal ANG II (8 ng); RDN further augmented this responsiveness. We found that all ANG II receptors in the kidney cortex were of the AT1 subtype. ANG II receptor binding characteristics in the renal cortex did not significantly differ between experimental groups, hence AT1 alterations are not responsible for renal vascular hyperresponsiveness to ANG II in ACF TGR, denervated or not. In conclusion, maintained renal AT1 receptor binding combined with elevated ANG II levels and renal vascular hyperresponsiveness to ANG II in ACF TGR influence renal hemodynamics and tubular reabsorption and lead to renal dysfunction in the high-output HF model. Since RDN did not attenuate the RBF decrease and enhanced renal vascular responsiveness to ANG II, the beneficial actions of RDN on HF-related mortality are probably not dominantly mediated by renal mechanism(s). Full article
Show Figures

Figure 1

28 pages, 2300 KiB  
Article
Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation
by Petr Kala, Matúš Miklovič, Šárka Jíchová, Petra Škaroupková, Zdeňka Vaňourková, Hana Maxová, Olga Gawrys, Elzbieta Kompanowska-Jezierska, Janusz Sadowski, John D. Imig, John R. Falck, Josef Veselka, Luděk Červenka, Renáta Aiglová, Marek Vícha, Vít Gloger and Miloš Táborský
Biomedicines 2021, 9(8), 1053; https://doi.org/10.3390/biomedicines9081053 - 20 Aug 2021
Cited by 17 | Viewed by 3661
Abstract
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin [...] Read more.
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF. Full article
Show Figures

Figure 1

22 pages, 5953 KiB  
Article
Kidney Response to Chemotherapy-Induced Heart Failure: mRNA Analysis in Normotensive and Ren-2 Transgenic Hypertensive Rats
by Šárka Jíchová, Olga Gawryś, Elżbieta Kompanowska-Jezierska, Janusz Sadowski, Vojtěch Melenovský, Lenka Hošková, Luděk Červenka, Petr Kala, Josef Veselka and Věra Čertíková Chábová
Int. J. Mol. Sci. 2021, 22(16), 8475; https://doi.org/10.3390/ijms22168475 - 6 Aug 2021
Cited by 2 | Viewed by 2201
Abstract
The aim of the present study was to perform kidney messenger ribonucleic acid (mRNA) analysis in normotensive, Hannover Sprague–Dawley (HanSD) rats and hypertensive, Ren-2 renin transgenic rats (TGR) after doxorubicin-induced heart failure (HF) with specific focus on genes that are implicated in the [...] Read more.
The aim of the present study was to perform kidney messenger ribonucleic acid (mRNA) analysis in normotensive, Hannover Sprague–Dawley (HanSD) rats and hypertensive, Ren-2 renin transgenic rats (TGR) after doxorubicin-induced heart failure (HF) with specific focus on genes that are implicated in the pathophysiology of HF-associated cardiorenal syndrome. We found that in both strains renin and angiotensin-converting enzyme mRNA expressions were upregulated indicating that the vasoconstrictor axis of the renin–angiotensin system was activated. We found that pre-proendothelin-1, endothelin-converting enzyme type 1 and endothelin type A receptor mRNA expressions were upregulated in HanSD rats, but not in TGR, suggesting the activation of endothelin system in HanSD rats, but not in TGR. We found that mRNA expression of cytochrome P-450 subfamily 2C23 was downregulated in TGR and not in HanSD rats, suggesting the deficiency in the intrarenal cytochrome P450-dependent pathway of arachidonic acid metabolism in TGR. These results should be the basis for future studies evaluating the pathophysiology of cardiorenal syndrome secondary to chemotherapy-induced HF in order to potentially develop new therapeutic approaches. Full article
(This article belongs to the Special Issue Mechanisms of Cardiovascular Disease: Molecular Perspective)
Show Figures

Figure 1

20 pages, 3344 KiB  
Article
Deleterious Effects of Hyperactivity of the Renin-Angiotensin System and Hypertension on the Course of Chemotherapy-Induced Heart Failure after Doxorubicin Administration: A Study in Ren-2 Transgenic Rat
by Petr Kala, Hana Bartušková, Jan Piťha, Zdenka Vaňourková, Soňa Kikerlová, Šárka Jíchová, Vojtěch Melenovský, Lenka Hošková, Josef Veselka, Elzbieta Kompanowska-Jezierska, Janusz Sadowski, Olga Gawrys, Hana Maxová and Luděk Červenka
Int. J. Mol. Sci. 2020, 21(24), 9337; https://doi.org/10.3390/ijms21249337 - 8 Dec 2020
Cited by 15 | Viewed by 2957
Abstract
Doxorubicin’s (DOX) cardiotoxicity contributes to the development of chemotherapy-induced heart failure (HF) and new treatment strategies are in high demand. The aim of the present study was to characterize a DOX-induced model of HF in Ren-2 transgenic rats (TGR), those characterized by hypertension [...] Read more.
Doxorubicin’s (DOX) cardiotoxicity contributes to the development of chemotherapy-induced heart failure (HF) and new treatment strategies are in high demand. The aim of the present study was to characterize a DOX-induced model of HF in Ren-2 transgenic rats (TGR), those characterized by hypertension and hyperactivity of the renin-angiotensin-aldosterone system, and to compare the results with normotensive transgene-negative, Hannover Sprague-Dawley (HanSD) rats. DOX was administered for two weeks in a cumulative dose of 15 mg/kg. In HanSD rats DOX administration resulted in the development of an early phase of HF with the dominant symptom of bilateral cardiac atrophy demonstrable two weeks after the last DOX injection. In TGR, DOX caused substantial impairment of systolic function already at the end of the treatment, with further progression observed throughout the experiment. Additionally, two weeks after the termination of DOX treatment, TGR exhibited signs of HF characteristic for the transition stage between the compensated and decompensated phases of HF. In conclusion, we suggest that DOX-induced HF in TGR is a suitable model to study the pathophysiological aspects of chemotherapy-induced HF and to evaluate novel therapeutic strategies to combat this form of HF, which are urgently needed. Full article
Show Figures

Figure 1

14 pages, 2922 KiB  
Article
Short-Term Western Diet Aggravates Non-Alcoholic Fatty Liver Disease (NAFLD) With Portal Hypertension in TGR(mREN2)27 Rats
by Carla Cremonese, Robert Schierwagen, Frank Erhard Uschner, Sandra Torres, Olaf Tyc, Cristina Ortiz, Martin Schulz, Alexander Queck, Glen Kristiansen, Michael Bader, Tilman Sauerbruch, Ralf Weiskirchen, Thomas Walther, Jonel Trebicka and Sabine Klein
Int. J. Mol. Sci. 2020, 21(9), 3308; https://doi.org/10.3390/ijms21093308 - 7 May 2020
Cited by 8 | Viewed by 5299
Abstract
Non-alcoholic fatty liver disease (NAFLD) is gaining in importance and is linked to obesity. Especially, the development of fibrosis and portal hypertension in NAFLD patients requires treatment. Transgenic TGR(mREN2)27 rats overexpressing mouse renin spontaneously develop NAFLD with portal hypertension but without obesity. This [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is gaining in importance and is linked to obesity. Especially, the development of fibrosis and portal hypertension in NAFLD patients requires treatment. Transgenic TGR(mREN2)27 rats overexpressing mouse renin spontaneously develop NAFLD with portal hypertension but without obesity. This study investigated the additional role of obesity in this model on the development of portal hypertension and fibrosis. Obesity was induced in twelve-week old TGR(mREN2)27 rats after receiving Western diet (WD) for two or four weeks. Liver fibrosis was assessed using standard techniques. Hepatic expression of transforming growth factor-β1 (TGF-β1), collagen type Iα1, α-smooth muscle actin, and the macrophage markers Emr1, as well as the chemoattractant Ccl2, interleukin-1β (IL1β) and tumor necrosis factor-α (TNFα) were analyzed. Assessment of portal and systemic hemodynamics was performed using the colored microsphere technique. As expected, WD induced obesity and liver fibrosis as confirmed by Sirius Red and Oil Red O staining. The expression of the monocyte-macrophage markers, Emr1, Ccl2, IL1β and TNFα were increased during feeding of WD, indicating infiltration of macrophages into the liver, even though this increase was statistically not significant for the EGF module-containing mucin-like receptor (Emr1) mRNA expression levels. Of note, portal pressure increased with the duration of WD compared to animals that received a normal chow. Besides obesity, WD feeding increased systemic vascular resistance reflecting systemic endothelial and splanchnic vascular dysfunction. We conclude that transgenic TGR(mREN2)27 rats are a suitable model to investigate NAFLD development with liver fibrosis and portal hypertension. Tendency towards elevated expression of Emr1 is associated with macrophage activity point to a significant role of macrophages in NAFLD pathogenesis, probably due to a shift of the renin–angiotensin system towards a higher activation of the classical pathway. The hepatic injury induced by WD in TGR(mREN2)27 rats is suitable to evaluate different stages of fibrosis and portal hypertension in NAFLD with obesity. Full article
(This article belongs to the Special Issue Pathophysiology of Liver Fibrosis and Its Therapies)
Show Figures

Figure 1

Back to TopTop