Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Relict Gull(Larus relictus)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9862 KB  
Article
Metagenomic and Antibiotic Resistance Analysis of the Gut Microbiota in Larus relictus and Anatidae Species Inhabiting the Honghaizi Wetland of Ordos, Inner Mongolia, from 2021 to 2023
by Ronglei Huang, Xue Ji, Lingwei Zhu, Chengyang Zhang, Tingting Luo, Bing Liang, Bowen Jiang, Ang Zhou, Chongtao Du and Yang Sun
Microorganisms 2024, 12(5), 978; https://doi.org/10.3390/microorganisms12050978 - 13 May 2024
Cited by 4 | Viewed by 1852
Abstract
Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus [...] Read more.
Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus relictus) and Anatidae species. Alpha diversity analysis revealed that the intestinal microbial richness of L. relictus was significantly lower than that of Anatidae, with distinct differences observed in microbial composition. Notably, the intestines of L. relictus harboured more pathogenic bacteria such as clostridium, which may contribute to the decline in their population and endangered status. A total of 117 strains of Escherichia coli were isolated, with 90.60% exhibiting full susceptibility to 21 antibiotics, while 25.3% exhibited significant biofilm formation. Comprehensive Antibiotic Resistance Database data indicated that glycopeptide resistance genes were the most prevalent type carried by migratory birds, alongside quinolone, tetracycline and lincosamide resistance genes. The abundance of resistance genes carried by migratory birds decreased over time. This metagenomic analysis provides valuable insights into the intestinal microbial composition of these wild bird species, offering important guidance for their conservation efforts, particularly for L. relictus, and contributing to our understanding of pathogen spread and antibiotic-resistant bacteria. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

8 pages, 686 KB  
Article
Breeding Population Dynamics of Relict Gull (Larus relictus) in Hongjian Nur, Shaanxi, China
by Qingxiong Wang, Chao Yang, Defu Hu, Hong Xiao and Dong Zhang
Animals 2022, 12(8), 1035; https://doi.org/10.3390/ani12081035 - 15 Apr 2022
Cited by 8 | Viewed by 2595
Abstract
Hongjian Nur is an important breeding and stopover area for the globally endangered Relict gull (Larus relictus). This is where the species was first found in 2000. The breeding population of this species was monitored over the long term by directly [...] Read more.
Hongjian Nur is an important breeding and stopover area for the globally endangered Relict gull (Larus relictus). This is where the species was first found in 2000. The breeding population of this species was monitored over the long term by directly counting nests from 2001 to 2020 in Hongjian Nur, Shaanxi, China. Our results suggest that breeding pairs increased rapidly, from 87 nests in 2001 to 7708 nests in 2010; at this point, the breeding population accounted for more than 85% of the global total, and was at the highest value during the past two decades. Subsequently, breeding pairs continued to decrease dramatically and reached a minimum number of 2054 nests in 2015, approximately 70% less than at their peak. In view of this situation, breeding islets were restored in 2014 and 2017, and the breeding population recovered slowly. Due to the changing ecological environment, breeding islets showed the same instability as the breeding population. Our conclusions support previous research, highlighting the importance of water level. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

15 pages, 8319 KB  
Article
The Dynamics of Hongjian Nur, the Largest Desert Freshwater Lake in China, during 1990–2017
by Zhiyong Jiang, Lian Feng, Sen Li, Jida Wang, Xiaobin Cai, Peirong Lin, Xiaoyan Wang and Hongmei Zhao
Remote Sens. 2021, 13(14), 2690; https://doi.org/10.3390/rs13142690 - 8 Jul 2021
Cited by 3 | Viewed by 3145
Abstract
China’s largest desert freshwater lake, Hongjian Nur (HN), which is the largest habitat of relict gull (Larus relictus), has rapidly changed in recent years. However, it is difficult to quantitatively monitor the dynamics of the lake and determine the causes of [...] Read more.
China’s largest desert freshwater lake, Hongjian Nur (HN), which is the largest habitat of relict gull (Larus relictus), has rapidly changed in recent years. However, it is difficult to quantitatively monitor the dynamics of the lake and determine the causes of its changes due to the lack of in situ observation. In this study, a remote sensing-based approach was utilized to overcome these limitations. The monthly water areas during 1990–2017 were first extracted from Landsat multispectral images via an improved method based on the floating algae index (FAI). Then, lake surface elevations measured by real-time kinematics (RTK) were used to calculate the variations in the water storage of HN. Finally, the driving factors of the rapidly changed HN in different periods were investigated by correlation analysis. The result indicated that the drivers affecting the water storage of HN in different periods were not the same. Climate change was the main driving factor of lake level fluctuation during the HN relatively stable stage (1990–1998). Drought and the intensification of human activities were the main factors for the rapid shrinkage of the HN during 1999–2010. Human activities, especially coal-related industries and reservoir impoundment, likely was the primary factors driving the decrease in the water storage of HN from 2010 to 2015. After 2015, the policies that decreased the water consumed by human activities formulated by the government and humid climate were the main factor for the expansion of HN. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Graphical abstract

25 pages, 4078 KB  
Article
Changes in Lake Area in Response to Climatic Forcing in the Endorheic Hongjian Lake Basin, China
by Kang Liang and Yanzhong Li
Remote Sens. 2019, 11(24), 3046; https://doi.org/10.3390/rs11243046 - 17 Dec 2019
Cited by 16 | Viewed by 4055
Abstract
Endorheic lakes are key components of the water cycle and the ecological system in endorheic basins. The endorheic Hongjian Lake wetland is China’s national nature reserve for protecting the vulnerable species of Relict Gull. The Hongjian Lake, once China’s largest desert freshwater lake, [...] Read more.
Endorheic lakes are key components of the water cycle and the ecological system in endorheic basins. The endorheic Hongjian Lake wetland is China’s national nature reserve for protecting the vulnerable species of Relict Gull. The Hongjian Lake, once China’s largest desert freshwater lake, has been suffering from severe shrinkage in the last two decades, yet the variations in the lake area and its responses to climate change are poorly understood due to a lack of in situ observations. In this study, using Landsat remote sensing images, the Modified Normalized Difference Water Index, and nonparametric tests, we obtained the Hongjian Lake area changes on the annual, seasonal, and quasi-monthly scales during 1988–2014, analyzed the corresponding variations of the six climatic factors in the Hongjian Lake Basin (HJLB) using satellite-based products, and investigated the multi-scale response characteristics of lake area to climatic forcing using correlation analysis. The results showed that the lake area decreased during 1988–2014, and this process can be divided into two sub-stages, namely the first slight increasing sub-phase in 1988–1999 and the second significant declining sub-phase in 2000–2014. The shifts in patterns of the seasonal cycle had three types: as the natural rhythm of the lake changes has been broken by intensive human activities since the late 1990s, the natural bimodal type I has obviously changed into non-natural bimodal type II and unimodal type III, featured by a declining peak in July–September. The climatic wet/dry regime on multi-scales during 1988–2014 in the HJLB was generally warming and drying, mainly reflected by the increase in temperature (T), arid index (AI) and evaporation (ET0, ETa), and the decrease in the precipitation (Pre) and actual water difference (AWD). There were large differences in the climatic factors at different time scales, especially in the wet and dry seasons. When the lagged effect, the cumulative effect, and the lagged and cumulative combined effect were gradually considered, the correlation coefficient significantly increased, and the direction of the correlation coefficient became coincident with common sense. The correlation analysis identified a lag period of approximately 1–3 years on an annual scale, and a lag period of approximately 1–3 months on a monthly scale. This study could provide a certain scientific reference for climate change detection, water resource management, and species habitat protection in the HJLB and similar endorheic basins or inland arid regions. Full article
(This article belongs to the Special Issue Remote Sensing of Wetlands)
Show Figures

Graphical abstract

23 pages, 18674 KB  
Article
Application of Landsat Imagery to Investigate Lake Area Variations and Relict Gull Habitat in Hongjian Lake, Ordos Plateau, China
by Kang Liang and Guozhen Yan
Remote Sens. 2017, 9(10), 1019; https://doi.org/10.3390/rs9101019 - 30 Sep 2017
Cited by 25 | Viewed by 5295
Abstract
Lakes in arid and semi-arid regions have an irreplaceable and important role in the local environment and wildlife habitat protection. Relict Gull (Larus relictus), which is listed as a “vulnerable” bird species in the IUCN Red List, uses only islands in lakes for [...] Read more.
Lakes in arid and semi-arid regions have an irreplaceable and important role in the local environment and wildlife habitat protection. Relict Gull (Larus relictus), which is listed as a “vulnerable” bird species in the IUCN Red List, uses only islands in lakes for habitat. The habitat with the largest colonies in Hongjian Lake (HL), which is located in Shaanxi Province in China, has been severely threatened by persistent lake shrinkage, yet the variations in the area of the lake and the islands are poorly understood due to a lack of in situ observations. In this study, using the Modified Normalized Difference Water Index, 336 Landsat remote sensing images from 1988–2015 were used to extract the monthly HL water area and lake island area, and the driving factors were investigated by correlation analysis. The results show that the lake area during 1988–2015 exhibited large fluctuations and an overall downward trend of −0.94 km2/year, and that the lake area ranged from 55.02 km2 in 1997 to 30.90 km2 in 2015. The cumulative anomaly analysis diagnosed the lake variations as two sub-periods with different characteristics and leading driving factors. The average and change trend were 52.88 and 0.21 km2/year during 1988–1998 and 38.85 and −1.04 km2/year during 1999–2015, respectively. During 1988–1998, the relatively high precipitation, low evapotranspiration, and low levels of human activity resulted in a weak increase in the area of HL. However, in 1999–2015, the more severe human activity as well as climate warming resulted in a fast decrease in the area of HL. The variations in lake island area were dependent on the area of HL, which ranged from 0.02 km2 to 0.22 km2. As the lake size declined, the islands successively outcropped in the form of the four island zones, and the two zones located in Northwest and South of HL were the most important habitats for Relict Gull. The formation of these island zones can provide enough space for Relict Gull breeding. Full article
(This article belongs to the Special Issue Remote Sensing of Floodpath Lakes and Wetlands)
Show Figures

Graphical abstract

16 pages, 2437 KB  
Article
Quantifying Streamflow Variations in Ungauged Lake Basins by Integrating Remote Sensing and Water Balance Modelling: A Case Study of the Erdos Larus relictus National Nature Reserve, China
by Kang Liang
Remote Sens. 2017, 9(6), 588; https://doi.org/10.3390/rs9060588 - 10 Jun 2017
Cited by 12 | Viewed by 5817
Abstract
Hydrological predictions in ungauged lakes are one of the most important issues in hydrological sciences. The habitat of the Relict Gull (Larus relictus) in the Erdos Larus relictus National Nature Reserve (ELRNNR) has been seriously endangered by lake shrinkage, yet the hydrological processes [...] Read more.
Hydrological predictions in ungauged lakes are one of the most important issues in hydrological sciences. The habitat of the Relict Gull (Larus relictus) in the Erdos Larus relictus National Nature Reserve (ELRNNR) has been seriously endangered by lake shrinkage, yet the hydrological processes in the catchment are poorly understood due to the lack of in-situ observations. Therefore, it is necessary to assess the variation in lake streamflow and its drivers. In this study, we employed the remote sensing technique and empirical equation to quantify the time series of lake water budgets, and integrated a water balance model and climate elasticity method to further examine ELRNNR basin streamflow variations from1974 to 2013. The results show that lake variations went through three phases with significant differences: The rapidly expanding sub-period (1974–1979), the relatively stable sub-period (1980–1999), and the dramatically shrinking sub-period (2000–2013). Both climate variation (expressed by precipitation and evapotranspiration) and human activities were quantified as drivers of streamflow variation, and the driving forces in the three phases had different contributions. As human activities gradually intensified, the contributions of human disturbances on streamflow variation obviously increased, accounting for 22.3% during 1980–1999 and up to 59.2% during 2000–2013. Intensified human interferences and climate warming have jointly led to the lake shrinkage since 1999. This study provides a useful reference to quantify lake streamflow and its drivers in ungauged basins. Full article
(This article belongs to the Special Issue Remote Sensing of Climate Change and Water Resources)
Show Figures

Figure 1

Back to TopTop