Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Rabdosia rubescens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2990 KiB  
Article
Synthesis and Application of a pH-Responsive Functional Metal–Organic Framework: In Vitro Investigation for Delivery of Oridonin in Cancer Therapy
by Jingyi Shen, Fangxin Gao, Qian Pan, Zhihui Zong and Lili Liang
Molecules 2024, 29(11), 2643; https://doi.org/10.3390/molecules29112643 - 4 Jun 2024
Cited by 5 | Viewed by 1265
Abstract
Oridonin (Ori) is a naturally existing diterpenoid substance that mainly exists in the Chinese medicinal plant Rabdosia rubescens. It was previously found to possess intriguing biological properties; however, the quick clearance from plasma and limited solubility in water restricts its use as a [...] Read more.
Oridonin (Ori) is a naturally existing diterpenoid substance that mainly exists in the Chinese medicinal plant Rabdosia rubescens. It was previously found to possess intriguing biological properties; however, the quick clearance from plasma and limited solubility in water restricts its use as a drug. Several metal–organic frameworks (MOFs), having big surfaces and large pores, have recently been considered promising drug transporters. The zeolitic imidazolate framework-8 (ZIF-8), a form of MOF consisting of 2-methylimidazole with zinc ions, is structurally stable under physiologically neutral conditions, while it can degrade at low pH values such as in tumor cells. Herein, a nanosized drug delivery system, Ori@ZIF-8, was successfully designed for encapsulating and transporting oridonin to the tumor site. The drug loading of the prepared Ori@ZIF-8 was 26.78%, and the particles’ mean size was 240.5 nm. In vitro, the release of Ori@ZIF-8 exhibited acid sensitivity, with a slow release under neutral conditions and rapid release of the drug under weakly acidic conditions. According to the in vitro anti-tumor experiments, Ori@ZIF-8 produced higher cytotoxicity than free Ori and induced apoptosis in A549 cancer cells. In conclusion, Ori@ZIF-8 could be a potential pH-responsive carrier to accurately release more oridonins at the tumor site. Full article
Show Figures

Graphical abstract

25 pages, 8842 KiB  
Article
Integrating Epigenetics, Proteomics, and Metabolomics to Reveal the Involvement of Wnt/β-Catenin Signaling Pathway in Oridonin-Induced Reproductive Toxicity
by Qibin Wu, Xinyue Gao, Yifan Lin, Caijin Wu, Jian Zhang, Mengting Chen, Jiaxin Wen, Yajiao Wu, Kun Tian, Wenqiang Bao, Pengming Sun and An Zhu
Toxics 2024, 12(5), 339; https://doi.org/10.3390/toxics12050339 - 7 May 2024
Cited by 4 | Viewed by 2513
Abstract
Oridonin is the primary active component in the traditional Chinese medicine Rabdosia rubescens, displaying anti-inflammatory, anti-tumor, and antibacterial effects. It is widely employed in clinical therapy for acute and chronic pharyngitis, tonsillitis, as well as bronchitis. Nevertheless, the clinical application of oridonin [...] Read more.
Oridonin is the primary active component in the traditional Chinese medicine Rabdosia rubescens, displaying anti-inflammatory, anti-tumor, and antibacterial effects. It is widely employed in clinical therapy for acute and chronic pharyngitis, tonsillitis, as well as bronchitis. Nevertheless, the clinical application of oridonin is significantly restricted due to its reproductive toxicity, with the exact mechanism remaining unclear. The aim of this study was to investigate the mechanism of oridonin-induced damage to HTR-8/SVneo cells. Through the integration of epigenetics, proteomics, and metabolomics methodologies, the mechanisms of oridonin-induced reproductive toxicity were discovered and confirmed through fluorescence imaging, RT-qPCR, and Western blotting. Experimental findings indicated that oridonin altered m6A levels, gene and protein expression levels, along with metabolite levels within the cells. Additionally, oridonin triggered oxidative stress and mitochondrial damage, leading to a notable decrease in WNT6, β-catenin, CLDN1, CCND1, and ZO-1 protein levels. This implied that the inhibition of the Wnt/β-catenin signaling pathway and disruption of tight junction might be attributed to the cytotoxicity induced by oridonin and mitochondrial dysfunction, ultimately resulting in damage to HTR-8/SVneo cells. Full article
(This article belongs to the Special Issue Drug Metabolism and Toxicological Mechanisms)
Show Figures

Figure 1

17 pages, 19177 KiB  
Article
Antibacterial Mechanisms and Antivirulence Activities of Oridonin against Pathogenic Aeromonas hydrophila AS 1.1801
by Lunji Wang, Huijuan Li, Jinhao Chen, Yi Wang, Yuqing Gu and Min Jiu
Microorganisms 2024, 12(2), 415; https://doi.org/10.3390/microorganisms12020415 - 19 Feb 2024
Cited by 6 | Viewed by 2330
Abstract
Aeromonas hydrophila, a Gram-negative bacterium widely found in freshwater environments, acts as a common conditional pathogen affecting humans, livestock, and aquatic animals. In this study, the impact of oridonin, an ent-kaurane diterpenoid compound derived from Rabdosia rubescens, on the virulence [...] Read more.
Aeromonas hydrophila, a Gram-negative bacterium widely found in freshwater environments, acts as a common conditional pathogen affecting humans, livestock, and aquatic animals. In this study, the impact of oridonin, an ent-kaurane diterpenoid compound derived from Rabdosia rubescens, on the virulence factors of A. hydrophila AS 1.1801 and its antibacterial mechanism was elucidated. The minimum inhibitory concentration (MIC) of oridonin against A. hydrophila AS 1.1801 was 100 μg/mL. Oridonin at inhibitory concentrations could significantly increase the electrical conductivity in the supernatant and escalate nucleic acid leakage (p < 0.01). This effect was concomitant with observed distortions in bacterial cells, the formation of cytoplasmic cavities, cellular damage, and pronounced inhibition of protein and nucleic acid synthesis. Additionally, oridonin at inhibitory levels exhibited a noteworthy suppressive impact on A. hydrophila AS 1.1801 across biofilm formation, motility, hemolytic activity, lipase activity, and protease activity (p < 0.05), demonstrating a dose-dependent enhancement. qRT-PCR analysis showed that the gene expression of luxR, qseB and omp were significantly downregulated after oridonin treatment in A. hydrophila AS 1.1801 (p < 0.05). Our results indicated that oridonin possessed significant antibacterial and anti-virulence effects on A. hydrophila AS 1.1801. Full article
(This article belongs to the Special Issue Advances in Novel Antibacterial Agents)
Show Figures

Figure 1

17 pages, 3553 KiB  
Article
Light-Emitting Diodes Modify Medicinal Quality of Mown Rabdosia rubescens, with Changes in Growth, Physiology, and Antioxidant Activity, under Drought Stress
by Jun Gao, Ping Meng, Yan Zhao, Jinsong Zhang, Chunxia He, Qirui Wang and Jinfeng Cai
Plants 2023, 12(18), 3189; https://doi.org/10.3390/plants12183189 - 6 Sep 2023
Cited by 4 | Viewed by 1438
Abstract
Medicinal plants accommodated by understory habitats can easily suffer over-exploitation in the heavy harvest of natural products. It is necessary to develop a sustainable cultural protocol to provide high-quality stocks for efficient regeneration. Drought places stress on medicinal plants during their culture by [...] Read more.
Medicinal plants accommodated by understory habitats can easily suffer over-exploitation in the heavy harvest of natural products. It is necessary to develop a sustainable cultural protocol to provide high-quality stocks for efficient regeneration. Drought places stress on medicinal plants during their culture by limiting new sprout growth and reducing the quality of medicinal extracts. Artificial mediating approaches should be considered in a sustainable regime of medicinal plant culture to test the potential tradeoff between resistance to drought and production ability. In this study, Rabdosia rubescens seedlings were raised in three light-emitting diode (LED) spectra from red (71.7% red, 14.6% green, 13.7% blue), green (26.2% red, 17.4% green, 56.4% blue), and blue (17.8% red, 33.7% green, 48.5% blue) lights. Mown seedlings were subjected to a simulated drought event. Drought stressed the seedlings by reducing the growth, dry mass, nitrogen (N) uptake, and oridonin content. Mowing increased the oridonin content but decreased total C and N accumulation and the δ13C level. The red light benefitted starch accumulation only under the well-watered condition, and the green light induced an upregulation of δ13C but decreased antioxidant activity. Oridonin content was negatively associated with combined δ13C and catalase activity. Overall, either mowing or blue light can be recommended for the culture of R. rubescens to increase oridonin content, alleviating some of the negative consequences of drought. Full article
(This article belongs to the Special Issue Soil-Plant-Water System and Interactions)
Show Figures

Figure 1

14 pages, 4298 KiB  
Article
Oridonin Protects against Myocardial Ischemia–Reperfusion Injury by Inhibiting GSDMD-Mediated Pyroptosis
by Jiahui Lin, Xianhui Lai, Xiaoxi Fan, Bozhi Ye, Lingfeng Zhong, Yucong Zhang, Ruiyin Shao, Si Shi, Weijian Huang, Lan Su and Miaomiao Ying
Genes 2022, 13(11), 2133; https://doi.org/10.3390/genes13112133 - 17 Nov 2022
Cited by 23 | Viewed by 2728
Abstract
Pyroptosis serves a crucial function in various types of ischemia and reperfusion injuries. Oridonin, a tetracycline diterpene derived from Rabdosia rubescens, can significantly inhibit the aggregation of NLRP3-mediated inflammasome. This experiment is aimed at investigating the effect of oridonin on pyroptosis in [...] Read more.
Pyroptosis serves a crucial function in various types of ischemia and reperfusion injuries. Oridonin, a tetracycline diterpene derived from Rabdosia rubescens, can significantly inhibit the aggregation of NLRP3-mediated inflammasome. This experiment is aimed at investigating the effect of oridonin on pyroptosis in mice cardiomyocytes. Based on the models of myocardial ischemia/reperfusion (I/R) and hypoxia/reoxygenation (H/R), Evans Blue/TTC double staining, TUNEL staining, and Western blotting were applied to determine the effects of oridonin on myocardial damage, cellular activity and signaling pathways involved in pyroptosis. During I/R and H/R treatments, the extent of gasdermin D-N domains was upregulated in cardiomyocytes. Apart from that, oridonin improved cell survival in vitro and decreased the myocardial infarct size in vivo by also downregulating the activation of pyroptosis. Finally, the expression levels of ASC, NLRP3 and p-p65 were markedly upregulated in cardiomyocytes after H/R treatment, whereas oridonin suppressed the expression of these proteins. The present experiment revealed that myocardial I/R injury and pyroptosis can be alleviated and inhibited by oridonin pretreatment via NF-κB/NLRP3 signaling pathway, both in vivo and in vitro. Therefore, oridonin may serve as a potentially novel agent for the clinical treatment of myocardial ischemia-reperfusion injuries. Full article
(This article belongs to the Special Issue Genetics and Mechanistic Basis of Cardiomyopathies)
Show Figures

Figure 1

15 pages, 3609 KiB  
Article
Preparation, Characterization, and Evaluation of Liposomes Containing Oridonin from Rabdosia rubescens
by Yinyue Wang, Mai Wang, Feier Lin, Xinyan Zhang, Yongming Zhao, Chunyan Guo and Jin Wang
Molecules 2022, 27(3), 860; https://doi.org/10.3390/molecules27030860 - 27 Jan 2022
Cited by 9 | Viewed by 3326
Abstract
Due to the remarkable anti-tumor activities of oridonin (Ori), research on Rabdosia rubescens has attracted more and more attention in the pharmaceutical field. The purpose of this study was to extract Ori from R. rubescens by ultrasound-assisted extraction (UAE) and prepare Ori liposomes [...] Read more.
Due to the remarkable anti-tumor activities of oridonin (Ori), research on Rabdosia rubescens has attracted more and more attention in the pharmaceutical field. The purpose of this study was to extract Ori from R. rubescens by ultrasound-assisted extraction (UAE) and prepare Ori liposomes as a novel delivery system to improve the bioavailability and biocompatibility. Response surface methodology (RSM), namely Box-Behnken design (BBD), was applied to optimize extraction conditions, formulation, and preparation process. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 75.9%, an extraction time of 35.7 min, and a solid/liquid ratio of 1:32.6. Under these optimal conditions, the extraction yield of Ori was 4.23 mg/g, which was well matched with the predicted value (4.28 mg/g). The optimal preparation conditions of Ori liposomes by RSM, with an ultrasonic time of 41.1 min, a soybean phospholipids/drug ratio of 9.6 g/g, and a water bath temperature of 53.4 °C, had higher encapsulation efficiency (84.1%). The characterization studies indicated that Ori liposomes had well-dispersible spherical shapes and uniform sizes with a particle size of 137.7 nm, a polydispersity index (PDI) of 0.216, and zeta potential of −24.0 mV. In addition, Ori liposomes presented better activity than free Ori. Therefore, the results indicated that Ori liposomes could enhance the bioactivity of Ori, being proposed as a promising vehicle for drug delivery. Full article
Show Figures

Figure 1

17 pages, 1287 KiB  
Review
An Insight into the Anti-Angiogenic and Anti-Metastatic Effects of Oridonin: Current Knowledge and Future Potential
by Nurul Akmaryanti Abdullah, Nur Fariesha Md Hashim, Aula Ammar and Noraina Muhamad Zakuan
Molecules 2021, 26(4), 775; https://doi.org/10.3390/molecules26040775 - 3 Feb 2021
Cited by 31 | Viewed by 4272
Abstract
Cancer is one of the leading causes of death worldwide, with a mortality rate of more than 9 million deaths reported in 2018. Conventional anti-cancer therapy can greatly improve survival however treatment resistance is still a major problem especially in metastatic disease. Targeted [...] Read more.
Cancer is one of the leading causes of death worldwide, with a mortality rate of more than 9 million deaths reported in 2018. Conventional anti-cancer therapy can greatly improve survival however treatment resistance is still a major problem especially in metastatic disease. Targeted anti-cancer therapy is increasingly used with conventional therapy to improve patients’ outcomes in advanced and metastatic tumors. However, due to the complexity of cancer biology and metastasis, it is urgent to develop new agents and evaluate the anti-cancer efficacy of available treatments. Many phytochemicals from medicinal plants have been reported to possess anti-cancer properties. One such compound is known as oridonin, a bioactive component of Rabdosia rubescens. Several studies have demonstrated that oridonin inhibits angiogenesis in various types of cancer, including breast, pancreatic, lung, colon and skin cancer. Oridonin’s anti-cancer effects are mediated through the modulation of several signaling pathways which include upregulation of oncogenes and pro-angiogenic growth factors. Furthermore, oridonin also inhibits cell migration, invasion and metastasis via suppressing epithelial-to-mesenchymal transition and blocking downstream signaling targets in the cancer metastasis process. This review summarizes the recent applications of oridonin as an anti-angiogenic and anti-metastatic drug both in vitro and in vivo, and its potential mechanisms of action. Full article
(This article belongs to the Special Issue Recent Advances in Anticancer Drugs II)
Show Figures

Figure 1

19 pages, 1618 KiB  
Article
Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities against Multidrug-Resistant Staphylococcus aureus and Cytotoxic Activities
by Gowoon Kim, Ren-You Gan, Dan Zhang, Arakkaveettil Kabeer Farha, Olivier Habimana, Vuyo Mavumengwana, Hua-Bin Li, Xiao-Hong Wang and Harold Corke
Pathogens 2020, 9(3), 185; https://doi.org/10.3390/pathogens9030185 - 4 Mar 2020
Cited by 37 | Viewed by 7017
Abstract
Novel alternative antibacterial compounds have been persistently explored from plants as natural sources to overcome antibiotic resistance leading to serious foodborne bacterial illnesses. In this study, the ethanolic extracts from 239 traditional Chinese medicinal plants (TCMP)’ materials were screened to discover promising candidates [...] Read more.
Novel alternative antibacterial compounds have been persistently explored from plants as natural sources to overcome antibiotic resistance leading to serious foodborne bacterial illnesses. In this study, the ethanolic extracts from 239 traditional Chinese medicinal plants (TCMP)’ materials were screened to discover promising candidates that have strong antibacterial properties against multidrug-resistant Staphylococcus (S.) aureus and low cytotoxicity. The results revealed that 74 extracts exhibited good antibacterial activities (diameter of inhibition zone (DIZ) ≥ 15 mm). Furthermore, 18 extracts (DIZ ≥ 20 mm) were determined their minimum inhibitory concentrations (MIC) and minimum bactericide concentrations (MBC), ranging from 0.1 to 12.5 mg/mL and 0.78 to 25 mg/mL, respectively. In addition, most of the 18 extracts showed relatively low cytotoxicity (a median lethal concentration (LC50) >100 µg/mL). The 18 extracts were further determined to estimate possible correlation of their phenolic contents with antibacterial activity, and the results did not show any significant correlation. In conclusion, this study selected out some promising antibacterial TCMP extracts with low cytotoxicity, including Rhus chinensis Mill., Ilex rotunda Thunb., Leontice kiangnanensis P.L.Chiu, Oroxylum indicum Vent., Isatis tinctorial L., Terminalia chebula Retz., Acacia catechu (L.f.) Willd., Spatholobus suberectus Dunn, Rabdosia rubescens (Hemsl.) H.Hara, Salvia miltiorrhiza Bunge, Fraxinus fallax Lingelsh, Coptis chinensis Franch., Agrimonia Pilosa Ledeb., and Phellodendron chinense C.K.Schneid. Full article
(This article belongs to the Section Waterborne/Foodborne/Airborne Pathogens)
Show Figures

Figure 1

23 pages, 4425 KiB  
Review
Solubility and Bioavailability Enhancement of Oridonin: A Review
by Yuanyuan Zhang, Shaohua Wang, Mengmeng Dai, Jijuan Nai, Liqiao Zhu and Huagang Sheng
Molecules 2020, 25(2), 332; https://doi.org/10.3390/molecules25020332 - 14 Jan 2020
Cited by 56 | Viewed by 5305
Abstract
Oridonin (ORI), an ent-kaurene tetracyclic diterpenoid compound, is isolated from Chinese herb Rabdosia rubescens with various biological and pharmacological activities including anti-tumor, anti-microbial and anti-inflammatory effects. However, the clinical application of ORI is limited due to its low solubility and poor bioavailability. In [...] Read more.
Oridonin (ORI), an ent-kaurene tetracyclic diterpenoid compound, is isolated from Chinese herb Rabdosia rubescens with various biological and pharmacological activities including anti-tumor, anti-microbial and anti-inflammatory effects. However, the clinical application of ORI is limited due to its low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored such as structural modification, new dosage form, etc. This review provides a detailed discussion on the research progress to increase the solubility and bioavailability of ORI. Full article
Show Figures

Graphical abstract

18 pages, 1785 KiB  
Article
Intracellular Glutathione Depletion by Oridonin Leads to Apoptosis in Hepatic Stellate Cells
by Liang-Mou Kuo, Chan-Yen Kuo, Chen-Yu Lin, Min-Fa Hung, Jiann-Jong Shen and Tsong-Long Hwang
Molecules 2014, 19(3), 3327-3344; https://doi.org/10.3390/molecules19033327 - 18 Mar 2014
Cited by 99 | Viewed by 9533
Abstract
Proliferation of hepatic stellate cells (HSCs) plays a key role in the pathogenesis of liver fibrosis. Induction of HSC apoptosis by natural products is considered an effective strategy for treating liver fibrosis. Herein, the apoptotic effects of 7,20-epoxy-ent-kaurane (oridonin), a diterpenoid [...] Read more.
Proliferation of hepatic stellate cells (HSCs) plays a key role in the pathogenesis of liver fibrosis. Induction of HSC apoptosis by natural products is considered an effective strategy for treating liver fibrosis. Herein, the apoptotic effects of 7,20-epoxy-ent-kaurane (oridonin), a diterpenoid isolated from Rabdosia rubescens, and its underlying mechanisms were investigated in rat HSC cell line, HSC-T6. We found that oridonin inhibited cell viability of HSC-T6 in a concentration-dependent manner. Oridonin induced a reduction in mitochondrial membrane potential and increases in caspase 3 activation, subG1 phase, and DNA fragmentation. These apoptotic effects of oridonin were completely reversed by thiol antioxidants, N-acetylcysteine (NAC) and glutathione monoethyl ester. Moreover, oridonin increased production of reactive oxygen species (ROS), which was also inhibited by NAC. Significantly, oridonin reduced intracellular glutathione (GSH) level in a concentration- and time-dependent fashion. Additionally, oridonin induced phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). NAC prevented the activation of MAPKs in oridonin-induced cells. However, selective inhibitors of MAPKs failed to alter oridonin-induced cell death. In summary, these results demonstrate that induction of apoptosis in HSC-T6 by oridonin is associated with a decrease in cellular GSH level and increase in ROS production. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

9 pages, 84 KiB  
Review
Natural Health Products That Inhibit Angiogenesis: A Potential Source for Investigational New Agents to Treat Cancer—Part 2
by S.M. Sagar, D. Yance and R.K. Wong
Curr. Oncol. 2006, 13(3), 99-107; https://doi.org/10.3747/co.v13i3.88 - 1 Jun 2006
Cited by 44 | Viewed by 1095
Abstract
The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are expanding the clinical knowledge that is already documented in traditional texts. The herbs that are traditionally used for anti-cancer treatment and that [...] Read more.
The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are expanding the clinical knowledge that is already documented in traditional texts. The herbs that are traditionally used for anti-cancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclo-oxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose–response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies or reducing toxicity. Their effectiveness may be increased when multiple agents are used in optimal combinations. New designs for trials to demonstrate activity in human subjects are required. Although controlled trials may be preferable, smaller studies with appropriate endpoints and surrogate markers for anti-angiogenic response could help to prioritize agents for larger, resource-intensive phase iii trials. Full article
1 pages, 20 KiB  
Review
Natural Health Products That Inhibit Angiogenesis: A Potential Source for Investigational New Agents to Treat Cancer—Part 1
by S.M. Sagar, D. Yance and R.K. Wong
Curr. Oncol. 2006, 13(1), 14-26; https://doi.org/10.3747/co.v13i1.77 - 1 Feb 2006
Cited by 158 | Viewed by 1903
Abstract
An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also [...] Read more.
An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose–response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies. Full article
Back to TopTop