Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = RIG-I-like receptors (RLR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4615 KiB  
Article
Mitochondrial Antiviral Signaling Protein Activation by Retinoic Acid-Inducible Gene I Agonist Triggers Potent Antiviral Defense in Umbilical Cord Mesenchymal Stromal Cells Without Compromising Mitochondrial Function
by Sebastián Castillo-Galán, Felipe Grünenwald, Yessia Hidalgo, J César Cárdenas, Maria Ignacia Cadiz, Francisca Alcayaga-Miranda, Maroun Khoury and Jimena Cuenca
Int. J. Mol. Sci. 2025, 26(10), 4686; https://doi.org/10.3390/ijms26104686 - 14 May 2025
Viewed by 756
Abstract
Mesenchymal stromal cells (MSCs) represent a promising therapeutic approach in viral infection management. However, their interaction with viruses remains poorly understood. MSCs can support antiviral immune responses and act as viral reservoirs, potentially compromising their therapeutic potential. Innate immune system recognition of viral [...] Read more.
Mesenchymal stromal cells (MSCs) represent a promising therapeutic approach in viral infection management. However, their interaction with viruses remains poorly understood. MSCs can support antiviral immune responses and act as viral reservoirs, potentially compromising their therapeutic potential. Innate immune system recognition of viral pathogens involves pattern recognition receptors (PRRs), including RIG-I-like receptors (RLRs), which activate mitochondrial antiviral signaling protein (MAVS). MAVS triggers antiviral pathways like IRF3 and NF-κB, leading to interferon (IFN) production and pro-inflammatory responses. This study explores the antiviral response in umbilical cord-derived MSCs (UC-MSCs) through targeted stimulation with influenza A virus-derived 5′triphosphate-RNA (3p-hpRNA), a RIG-I agonist. By investigating MAVS activation, we provide mechanistic insights into the immune response at the molecular level. Our findings reveal that 3p-hpRNA stimulation triggers immune activation of the IRF3 and NF-κB pathways through MAVS. Subsequently, this leads to the induction of type I and III IFNs, IFN-stimulated genes (ISGs), and pro-inflammatory cytokines. Critically, this immune activation occurs without compromising mitochondrial integrity. UC-MSCs retain their capacity for mitochondrial transfer to recipient cells. These results highlight the adaptability of UC-MSCs, offering a nuanced understanding of immune responses balancing activation with metabolic integrity. Finally, our research provides mechanistic evidence for MSC-based interventions against viral infections. Full article
Show Figures

Figure 1

27 pages, 1682 KiB  
Review
Cell-Autonomous Immunity: From Cytosolic Sensing to Self-Defense
by Danlin Han, Bozheng Zhang, Zhe Wang and Yang Mi
Int. J. Mol. Sci. 2025, 26(9), 4025; https://doi.org/10.3390/ijms26094025 - 24 Apr 2025
Viewed by 1046
Abstract
As an evolutionarily conserved and ubiquitous mechanism of host defense, non-immune cells in vertebrates possess the intrinsic ability to autonomously detect and combat intracellular pathogens. This process, termed cell-autonomous immunity, is distinct from classical innate immunity. In this review, we comprehensively examine the [...] Read more.
As an evolutionarily conserved and ubiquitous mechanism of host defense, non-immune cells in vertebrates possess the intrinsic ability to autonomously detect and combat intracellular pathogens. This process, termed cell-autonomous immunity, is distinct from classical innate immunity. In this review, we comprehensively examine the defense mechanisms employed by non-immune cells in response to intracellular pathogen invasion. We provide a detailed analysis of the cytosolic sensors that recognize aberrant nucleic acids, lipopolysaccharide (LPS), and other pathogen-associated molecular patterns (PAMPs). Specifically, we elucidate the molecular mechanisms underlying key signaling pathways, including the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mitochondrial antiviral signaling (MAVS) axis, and the guanylate-binding proteins (GBPs)-mediated pathway. Furthermore, we critically evaluate the involvement of these pathways in the pathogenesis of various diseases, including autoimmune disorders, inflammatory conditions, and malignancies, while highlighting their potential as therapeutic targets. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 1307 KiB  
Article
Synergistic Activity of Second Mitochondrial-Derived Activator of Caspases Mimetic with Toll-like Receptor 8 Agonist Reverses HIV-1-Latency and Enhances Antiviral Immunity
by Killian E. Vlaming, Jade Jansen, Godelieve J. de Bree, Neeltje A. Kootstra and Teunis B. H. Geijtenbeek
Int. J. Mol. Sci. 2025, 26(6), 2575; https://doi.org/10.3390/ijms26062575 - 13 Mar 2025
Cited by 1 | Viewed by 733
Abstract
HIV-1 infection is successfully treated by antiretroviral therapy; however, it is not curative as HIV-1 remains present in the viral reservoir. A strategy to eliminate the viral reservoir relies on the reactivation of the latent provirus to subsequently trigger immune-mediated clearance. Here, we [...] Read more.
HIV-1 infection is successfully treated by antiretroviral therapy; however, it is not curative as HIV-1 remains present in the viral reservoir. A strategy to eliminate the viral reservoir relies on the reactivation of the latent provirus to subsequently trigger immune-mediated clearance. Here, we investigated whether the activation of Toll-like receptor 8 (TLR8) or RIG-I-like receptor (RLR) together with the latency reversal agent (LRA) second mitochondrial-derived activator of caspases mimetics (SMACm) leads to HIV-1 reservoir reduction and antiviral immune activation. The TLR8 and RLR agonist elicited a robust pro-inflammatory cytokine response in PBMCs from both PWH and uninfected people. Notably, co-stimulation with SMACm specifically enhanced TLR8 induced pro-inflammatory cytokine as well as CD8 T cell responses. Ex vivo treatment of PBMCs from PWH with SMACm significantly decreased the size of the inducible HIV-1 reservoir, whereas targeting TLR8 or RLR reduced the HIV-1 reservoir in 50% of PWH ex vivo. Although co-stimulation with TLR8/RLR agonists further reduced the HIV-1 reservoir in 25% of PWH ex vivo, effectively inducing antiviral immunity may help eliminate reactivated HIV-1 cells in vivo. Our findings strongly suggest that LRAs can be used in combination with agonists for pattern recognition receptors to reactivate HIV-1 and induce antiviral immunity. Full article
(This article belongs to the Special Issue Viral Infections and Host Immune Responses)
Show Figures

Figure 1

26 pages, 4444 KiB  
Article
HCoV-229E Mpro Suppresses RLR-Mediated Innate Immune Signalling Through Cleavage of NEMO and Through Other Mechanisms
by Xavier Martiáñez-Vendrell, Puck B. van Kasteren, Sebenzile K. Myeni and Marjolein Kikkert
Int. J. Mol. Sci. 2025, 26(3), 1197; https://doi.org/10.3390/ijms26031197 - 30 Jan 2025
Cited by 1 | Viewed by 949
Abstract
In order to detect and respond to invading pathogens, mammals have evolved a battery of pattern recognition receptors. Among these, RIG-I-like receptors (RLR) are cytosolic RNA sensors that play an essential role in the innate immune response against RNA viruses, including coronaviruses. In [...] Read more.
In order to detect and respond to invading pathogens, mammals have evolved a battery of pattern recognition receptors. Among these, RIG-I-like receptors (RLR) are cytosolic RNA sensors that play an essential role in the innate immune response against RNA viruses, including coronaviruses. In return, coronaviruses have acquired diverse strategies to impair RLR-mediated immune responses to enable productive infection. Viral innate immune evasion mechanisms have been well studied for highly pathogenic human coronaviruses (HCoVs), and often, these activities are thought to be linked to the severe symptoms these viruses can cause. Whether other coronaviruses, including human common cold coronaviruses, display similar activities has remained understudied. Here, we present evidence that the main protease (Mpro) of common cold HCoV-229E acts as an interferon (IFN) and NF-κB antagonist by disrupting RLR-mediated antiviral signalling. Furthermore, we show that HCoV-229E, HCoV-OC43 and MERS-CoV Mpros are able to directly cleave NEMO. We also show that HCoV-229E Mpro induces the cleavage and/or degradation of multiple other RLR pathway components, including MDA5, TBK1 and IKKε. Finally, we show that HCoV-229E infection leads to a delayed innate immune response that is accompanied by a decrease in NEMO protein levels. Our results suggest that NEMO degradation during HCoV-229E infection could be mediated, in part, by cellular degradation pathways, in addition to viral Mpro-mediated cleavage. Altogether, our research unveils innate immune evasion activities of the Mpros of low-pathogenic coronaviruses, which, despite their low pathogenicity, appear to share functionalities previously described for highly pathogenic HCoVs. Full article
(This article belongs to the Special Issue Viral Infections and Host Immune Responses)
Show Figures

Figure 1

15 pages, 4078 KiB  
Article
NLRC3 Attenuates Antiviral Innate Immune Response by Targeting IRF7 in Grass Carp (Ctenopharyngodon idelus)
by Lei Zhang, Haitai Chen, Xiang Zhao, Youcheng Chen, Shenpeng Li, Tiaoyi Xiao and Shuting Xiong
Int. J. Mol. Sci. 2025, 26(2), 840; https://doi.org/10.3390/ijms26020840 - 20 Jan 2025
Viewed by 983
Abstract
NLRC3 belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that Ctenopharyngodon idelus NLRC3 (CiNLRC3) acts as a negative regulator in the antiviral immune response. Cinlrc3 is ubiquitously [...] Read more.
NLRC3 belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that Ctenopharyngodon idelus NLRC3 (CiNLRC3) acts as a negative regulator in the antiviral immune response. Cinlrc3 is ubiquitously expressed across tested tissues, displaying particularly high expression in the intestine, spleen, gill and kidney. Notably, Cinlrc3 expression is markedly upregulated following grass carp reovirus (GCRV) infection both in vivo and in vitro. Functional assays reveal that the overexpression of CiNLRC3 hampers cellular antiviral responses, thereby facilitating viral replication. Conversely, the silencing of CiNLRC3 through siRNA transfection enhances these antiviral activities. Additionally, CiNLRC3 substantially diminishes the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated interferon (IFN) response in fish. Subsequent molecular investigations indicates that CiNLRC3 interacts with the RLR molecule node, IRF7 but not IRF3, by degrading the IRF7 protein in a proteasome-dependent manner. Furthermore, CiNLRC3 co-localizes with CiIRF7 in the cytoplasm and impedes the IRF7-induced IFN response, resulting in impairing IRF7-mediated antiviral immunity. Summarily, these findings underscore the critical inhibitory role of teleost NLRC3 in innate immunity, offering new perspectives on its regulatory functions and potential as a target for resistant breeding in fish. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

17 pages, 1477 KiB  
Review
Characterization of Platelet Receptors and Their Involvement in Immune Activation of These Cells
by Beata Tokarz-Deptuła, Łukasz Baraniecki, Joanna Palma, Michał Stosik and Wiesław Deptuła
Int. J. Mol. Sci. 2024, 25(23), 12611; https://doi.org/10.3390/ijms252312611 - 24 Nov 2024
Cited by 3 | Viewed by 1811
Abstract
The article characterises platelets, pointing out the role and contribution of their numerous receptors determining their specific and broad immune activity. Three types of platelet receptors are described, that is, extracellular and intracellular receptors—TLR (toll-like receptors), NLR (NOD-like receptor), and RLR (RIG-I-like receptor); [...] Read more.
The article characterises platelets, pointing out the role and contribution of their numerous receptors determining their specific and broad immune activity. Three types of platelet receptors are described, that is, extracellular and intracellular receptors—TLR (toll-like receptors), NLR (NOD-like receptor), and RLR (RIG-I-like receptor); extracellular receptors—selectins and integrins; and their other extracellular receptors—CLR (C-type lectin receptor), CD (cluster of differentiation), TNF (tumour necrosis factor), among others. Outlining the contribution of these numerous platelet receptors to the intravascular immunity, it has been shown that they are formed by their fusion with pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and lifestyle-associated molecular patterns (LAMPs). They are initiating and effector components of signal transduction of these cells, and their expression and quantity determine the specific and broad functions of platelets towards influencing vascular endothelial cells, but mainly PRRs (pattern recognition receptors) of blood immune cells. These facts make platelets the fundamental elements that shape not only intravascular homeostasis, as previously indicated, but they become the determinants of immunity in blood vessels. Describing the reactions of the characterised three groups of platelet receptors with PAMP, DAMP and LAMP molecules, the pathways and participation of platelets in the formation and construction of intravascular immune status, in physiological states, but mainly in pathological states, including bacterial and viral infections, are presented, making these cells essential elements in the health and disease of mammals, including humans. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 14810 KiB  
Article
Upregulation of Neuroinflammation-Associated Genes in the Brain of SARS-CoV-2-Infected Mice
by Soo-Jin Oh, Pratima Kumari, Tabassum Tasnim Auroni, Shannon Stone, Heather Pathak, Amany Elsharkawy, Janhavi Prasad Natekar, Ok Sarah Shin and Mukesh Kumar
Pathogens 2024, 13(7), 528; https://doi.org/10.3390/pathogens13070528 - 22 Jun 2024
Cited by 5 | Viewed by 2467
Abstract
Neurological manifestations are a significant complication of coronavirus disease 2019 (COVID-19), but the underlying mechanisms are yet to be understood. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced neuroinvasion and encephalitis were observed in K18-hACE2 mice, leading to mortality. Our goal in this [...] Read more.
Neurological manifestations are a significant complication of coronavirus disease 2019 (COVID-19), but the underlying mechanisms are yet to be understood. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced neuroinvasion and encephalitis were observed in K18-hACE2 mice, leading to mortality. Our goal in this study was to gain insights into the molecular pathogenesis of neurological manifestations in this mouse model. To analyze differentially expressed genes (DEGs) in the brains of mice following SARS-CoV-2 infection, we performed NanoString gene expression analysis using three individual animal samples at 1, 3, and 6 days post-infection. We identified the DEGs by comparing them to animals that were not infected with the virus. We found that genes upregulated at day 6 post-infection were mainly associated with Toll-like receptor (TLR) signaling, RIG-I-like receptor (RLR) signaling, and cell death pathways. However, downregulated genes were associated with neurodegeneration and synaptic signaling pathways. In correlation with gene expression profiles, a multiplexed immunoassay showed the upregulation of multiple cytokines and chemokines involved in inflammation and cell death in SARS-CoV-2-infected brains. Furthermore, the pathway analysis of DEGs indicated a possible link between TLR2-mediated signaling pathways and neuroinflammation, as well as pyroptosis and necroptosis in the brain. In conclusion, our work demonstrates neuroinflammation-associated gene expression profiles, which can provide key insight into the severe disease observed in COVID-19 patients. Full article
Show Figures

Figure 1

16 pages, 19366 KiB  
Article
Multi-Omics Analysis Reveals the IFI6 Gene as a Prognostic Indicator and Therapeutic Target in Esophageal Cancer
by Nguyen-Kieu Viet-Nhi, Tran Minh Quan, Vu Cong Truc, Tran Anh Bich, Pham Hoang Nam, Nguyen Quoc Khanh Le, Po-Yueh Chen and Shih-Han Hung
Int. J. Mol. Sci. 2024, 25(5), 2691; https://doi.org/10.3390/ijms25052691 - 26 Feb 2024
Cited by 6 | Viewed by 3995
Abstract
The role of the IFI6 gene has been described in several cancers, but its involvement in esophageal cancer (ESCA) remains unclear. This study aimed to identify novel prognostic indicators for ESCA-targeted therapy by investigating IFI6’s expression, epigenetic mechanisms, and signaling activities. We utilized [...] Read more.
The role of the IFI6 gene has been described in several cancers, but its involvement in esophageal cancer (ESCA) remains unclear. This study aimed to identify novel prognostic indicators for ESCA-targeted therapy by investigating IFI6’s expression, epigenetic mechanisms, and signaling activities. We utilized public data from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) to analyze IFI6’s expression, clinical characteristics, gene function, pathways, and correlation with different immune cells in ESCA. The TIMER2.0 database was employed to assess the pan-cancer expression of IFI6, while UALCAN was used to examine its expression across tumor stages and histology subtypes. Additionally, the KEGG database helped identify related pathways. Our findings revealed 95 genes positively correlated and 15 genes negatively correlated with IFI6 in ESCA. IFI6 was over-expressed in ESCA and other cancers, impacting patient survival and showing higher expression in tumor tissues than normal tissues. IFI6 was also correlated with CD4+ T cells and B cell receptors (BCRs), both essential in immune response. GO Biological Process (GO BP) enrichment analysis indicated that IFI6 was primarily associated with the Type I interferon signaling pathway and the defense response to viruses. Intriguingly, KEGG pathway analysis demonstrated that IFI6 and its positively correlated genes in ESCA were mostly linked to the Cytosolic DNA-sensing pathway, which plays a crucial role in innate immunity and viral defense, and the RIG-I-like receptor (RLR) signaling pathway, which detects viral infections and activates immune responses. Pathways related to various viral infections were also identified. It is important to note that our study relied on online databases. Given that ESCA consists of two distinct subgroups (ESCC and EAC), most databases combine them into a single category. Future research should focus on evaluating IFI6 expression and its impact on each subgroup to gain more specific insights. In conclusion, inhibiting IFI6 using targeted therapy could be an effective strategy for treating ESCA considering its potential as a biomarker and correlation with immune cell factors. Full article
(This article belongs to the Special Issue New Insights in Translational Bioinformatics)
Show Figures

Figure 1

18 pages, 1178 KiB  
Review
Type I IFN in Glomerular Disease: Scarring beyond the STING
by Alexis Paulina Jimenez-Uribe, Steve Mangos and Eunsil Hahm
Int. J. Mol. Sci. 2024, 25(5), 2497; https://doi.org/10.3390/ijms25052497 - 21 Feb 2024
Viewed by 2736
Abstract
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along [...] Read more.
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

7 pages, 847 KiB  
Brief Report
Length-Dependent Modulation of B Cell Activating Factor Transcripts in Chicken Macrophage by Viral Double-Stranded RNA
by Magda I. Abo-Samaha, Mohammed M. Sharaf, Abeer F. El-Nahas and Solomon O. Odemuyiwa
Vaccines 2023, 11(10), 1561; https://doi.org/10.3390/vaccines11101561 - 3 Oct 2023
Cited by 2 | Viewed by 1698
Abstract
Viral double-stranded RNA (dsRNA) interacts with Retinoic-acid-inducible-gene-1 (RIG-1)-like receptors (RLRs) to induce type 1 interferons. Melanoma-derived-antigen-5 (MDA-5), an RLR, but not RIG-1, is found in chickens. Ducks express both RIG-1 and MDA-5, a possible cause of differences in susceptibility to influenza virus infection [...] Read more.
Viral double-stranded RNA (dsRNA) interacts with Retinoic-acid-inducible-gene-1 (RIG-1)-like receptors (RLRs) to induce type 1 interferons. Melanoma-derived-antigen-5 (MDA-5), an RLR, but not RIG-1, is found in chickens. Ducks express both RIG-1 and MDA-5, a possible cause of differences in susceptibility to influenza virus infection between chickens and ducks. Using the HD11 chicken macrophage cell line and an RT2 Profiler PCR-array system, we showed that high-molecular-weight poly(I:C), HMW-poly(I:C), upregulates CCL4, interferon-gamma, interleukin-1, and interleukin-6 mRNA transcripts. HMW-poly(I:C), an in vitro surrogate of long dsRNA species, also induces the upregulation of IL-12B and B cell activating factor (BAFF). Conversely, low-molecular-weight poly(I:C), LMW-poly(I:C) did not induce a distinct cytokine expression pattern. Nonetheless, co-transfection of LMW and HMW-poly(I:C) significantly reduced the upregulation of IL12B and BAFF by HMW-poly(I:C). These findings support previous studies that found no expression of RIG-1, a receptor for short dsRNA species, in chicken cells. Surprisingly, however, our data suggested that in the absence of RIG-1 in chicken macrophages, short dsRNA species may inhibit macrophage-mediated B cell development and survival by modulating the expression of BAFF without significantly reducing type 1 interferon response. Full article
(This article belongs to the Section Vaccines, Clinical Advancement, and Associated Immunology)
Show Figures

Figure 1

18 pages, 1903 KiB  
Review
MicroRNAs in the Regulation of RIG-I-like Receptor Signaling Pathway: Possible Strategy for Viral Infection and Cancer
by Dengwang Chen, Qinglu Ji, Jing Liu, Feng Cheng, Jishan Zheng, Yunyan Ma, Yuqi He, Jidong Zhang and Tao Song
Biomolecules 2023, 13(9), 1344; https://doi.org/10.3390/biom13091344 - 4 Sep 2023
Cited by 8 | Viewed by 3440
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play a crucial role as pattern-recognition receptors within the innate immune system. These receptors, present in various cell and tissue types, serve as essential sensors for viral infections, enhancing the immune system’s capacity to combat [...] Read more.
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play a crucial role as pattern-recognition receptors within the innate immune system. These receptors, present in various cell and tissue types, serve as essential sensors for viral infections, enhancing the immune system’s capacity to combat infections through the induction of type I interferons (IFN-I) and inflammatory cytokines. RLRs are involved in a variety of physiological and pathological processes, including viral infections, autoimmune disorders, and cancer. An increasing body of research has examined the possibility of RLRs or microRNAs as therapeutic targets for antiviral infections and malignancies, despite the fact that few studies have focused on the regulatory function of microRNAs on RLR signaling. Consequently, our main emphasis in this review is on elucidating the role of microRNAs in modulating the signaling pathways of RLRs in the context of cancer and viral infections. The aim is to establish a robust knowledge base that can serve as a basis for future comprehensive investigations into the interplay between microRNAs and RIG-I, while also facilitating the advancement of therapeutic drug development. Full article
Show Figures

Figure 1

13 pages, 846 KiB  
Review
The Role of RNA Sensors in Regulating Innate Immunity to Gammaherpesviral Infections
by Huirong Zhang, Praneet K. Sandhu and Blossom Damania
Cells 2023, 12(12), 1650; https://doi.org/10.3390/cells12121650 - 17 Jun 2023
Cited by 4 | Viewed by 3548
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) and the Epstein–Barr virus (EBV) are double-stranded DNA oncogenic gammaherpesviruses. These two viruses are associated with multiple human malignancies, including both B and T cell lymphomas, as well as epithelial- and endothelial-derived cancers. KSHV and EBV establish a life-long [...] Read more.
Kaposi’s sarcoma-associated herpesvirus (KSHV) and the Epstein–Barr virus (EBV) are double-stranded DNA oncogenic gammaherpesviruses. These two viruses are associated with multiple human malignancies, including both B and T cell lymphomas, as well as epithelial- and endothelial-derived cancers. KSHV and EBV establish a life-long latent infection in the human host with intermittent periods of lytic replication. Infection with these viruses induce the expression of both viral and host RNA transcripts and activates several RNA sensors including RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), protein kinase R (PKR) and adenosine deaminases acting on RNA (ADAR1). Activation of these RNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV and EBV utilize both viral and cellular proteins to block the innate immune pathways and facilitate their own infection. In this review, we summarize how gammaherpesviral infections activate RNA sensors and induce their downstream signaling cascade, as well as how these viruses evade the antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation. Full article
(This article belongs to the Special Issue Viruses and Cancer: From Cellular Mechanism to Therapeutic Aspects)
Show Figures

Figure 1

30 pages, 13078 KiB  
Article
Oncolytic Rodent Protoparvoviruses Evade a TLR- and RLR-Independent Antiviral Response in Transformed Cells
by Assia Angelova, Kristina Pierrard, Claudia N. Detje, Estelle Santiago, Annabel Grewenig, Jürg P. F. Nüesch, Ulrich Kalinke, Guy Ungerechts, Jean Rommelaere and Laurent Daeffler
Pathogens 2023, 12(4), 607; https://doi.org/10.3390/pathogens12040607 - 17 Apr 2023
Cited by 5 | Viewed by 2639
Abstract
The oncolytic rodent protoparvoviruses (PVs) minute virus of mice (MVMp) and H-1 parvovirus (H-1PV) are promising cancer viro-immunotherapy candidates capable of both exhibiting direct oncolytic activities and inducing anticancer immune responses (AIRs). Type-I interferon (IFN) production is instrumental for the activation of an [...] Read more.
The oncolytic rodent protoparvoviruses (PVs) minute virus of mice (MVMp) and H-1 parvovirus (H-1PV) are promising cancer viro-immunotherapy candidates capable of both exhibiting direct oncolytic activities and inducing anticancer immune responses (AIRs). Type-I interferon (IFN) production is instrumental for the activation of an efficient AIR. The present study aims at characterizing the molecular mechanisms underlying PV modulation of IFN induction in host cells. MVMp and H-1PV triggered IFN production in semi-permissive normal mouse embryonic fibroblasts (MEFs) and human peripheral blood mononuclear cells (PBMCs), but not in permissive transformed/tumor cells. IFN production triggered by MVMp in primary MEFs required PV replication and was independent of the pattern recognition receptors (PRRs) Toll-like (TLR) and RIG-like (RLR) receptors. PV infection of (semi-)permissive cells, whether transformed or not, led to nuclear translocation of the transcription factors NFĸB and IRF3, hallmarks of PRR signaling activation. Further evidence showed that PV replication in (semi-)permissive cells resulted in nuclear accumulation of dsRNAs capable of activating mitochondrial antiviral signaling (MAVS)-dependent cytosolic RLR signaling upon transfection into naïve cells. This PRR signaling was aborted in PV-infected neoplastic cells, in which no IFN production was detected. Furthermore, MEF immortalization was sufficient to strongly reduce PV-induced IFN production. Pre-infection of transformed/tumor but not of normal cells with MVMp or H-1PV prevented IFN production by classical RLR ligands. Altogether, our data indicate that natural rodent PVs regulate the antiviral innate immune machinery in infected host cells through a complex mechanism. In particular, while rodent PV replication in (semi-)permissive cells engages a TLR-/RLR-independent PRR pathway, in transformed/tumor cells this process is arrested prior to IFN production. This virus-triggered evasion mechanism involves a viral factor(s), which exert(s) an inhibitory action on IFN production, particularly in transformed/tumor cells. These findings pave the way for the development of second-generation PVs that are defective in this evasion mechanism and therefore endowed with increased immunostimulatory potential through their ability to induce IFN production in infected tumor cells. Full article
(This article belongs to the Special Issue The Multifaceted Parvoviridae Family: From Pathogens to Therapeutics)
Show Figures

Figure 1

37 pages, 3303 KiB  
Review
Crosstalk between Autophagy and RLR Signaling
by Po-Yuan Ke
Cells 2023, 12(6), 956; https://doi.org/10.3390/cells12060956 - 21 Mar 2023
Cited by 9 | Viewed by 4149
Abstract
Autophagy plays a homeostatic role in regulating cellular metabolism by degrading unwanted intracellular materials and acts as a host defense mechanism by eliminating infecting pathogens, such as viruses. Upon viral infection, host cells often activate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling [...] Read more.
Autophagy plays a homeostatic role in regulating cellular metabolism by degrading unwanted intracellular materials and acts as a host defense mechanism by eliminating infecting pathogens, such as viruses. Upon viral infection, host cells often activate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling to induce the transcription of type I interferons, thus establishing the first line of the innate antiviral response. In recent years, numerous studies have shown that virus-mediated autophagy activation may benefit viral replication through different actions on host cellular processes, including the modulation of RLR-mediated innate immunity. Here, an overview of the functional molecules and regulatory mechanism of the RLR antiviral immune response as well as autophagy is presented. Moreover, a summary of the current knowledge on the biological role of autophagy in regulating RLR antiviral signaling is provided. The molecular mechanisms underlying the crosstalk between autophagy and RLR innate immunity are also discussed. Full article
(This article belongs to the Special Issue Autophagy in Cell Survival and Growth)
Show Figures

Graphical abstract

14 pages, 5478 KiB  
Article
Development of Specific Monoclonal Antibodies against Porcine RIG-I-like Receptors Revealed the Species Specificity
by Qi Shao, Shuangjie Li, Qi Cao, Haotian Gu, Jiajia Zhang, Youwen Zhang, Kaili Zhang, Wanglong Zheng, Nanhua Chen, Shaobin Shang and Jianzhong Zhu
Int. J. Mol. Sci. 2023, 24(4), 4118; https://doi.org/10.3390/ijms24044118 - 18 Feb 2023
Cited by 2 | Viewed by 1992
Abstract
The RIG-I-like receptors (RLRs) play critical roles in sensing and combating viral infections, particularly RNA virus infections. However, there is a dearth of research on livestock RLRs due to a lack of specific antibodies. In this study, we purified porcine RLR proteins and [...] Read more.
The RIG-I-like receptors (RLRs) play critical roles in sensing and combating viral infections, particularly RNA virus infections. However, there is a dearth of research on livestock RLRs due to a lack of specific antibodies. In this study, we purified porcine RLR proteins and developed monoclonal antibodies (mAbs) against porcine RLR members RIG-I, MDA5 and LGP2, for which one, one and two hybridomas were obtained, respectively. The porcine RIG-I and MDA5 mAbs each targeted the regions beyond the N-terminal CARDs domains, whereas the two LGP2 mAbs were both directed to the N-terminal helicase ATP binding domain in the Western blotting. In addition, all of the porcine RLR mAbs recognized the corresponding cytoplasmic RLR proteins in the immunofluorescence and immunochemistry assays. Importantly, both RIG-I and MDA5 mAbs are porcine specific, without demonstrating any cross-reactions with the human counterparts. As for the two LGP2 mAbs, one is porcine specific, whereas another one reacts with both porcine and human LGP2. Thus, our study not only provides useful tools for porcine RLR antiviral signaling research, but also reveals the porcine species specificity, giving significant insights into porcine innate immunity and immune biology. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop