Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = RETNLB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4508 KiB  
Article
Resistin-like Molecule α and Pulmonary Vascular Remodeling: A Multi-Strain Murine Model of Antigen and Urban Ambient Particulate Matter Co-Exposure
by Nedim Durmus, Wen-Chi Chen, Sung-Hyun Park, Leigh M. Marsh, Sophia Kwon, Anna Nolan and Gabriele Grunig
Int. J. Mol. Sci. 2023, 24(15), 11918; https://doi.org/10.3390/ijms241511918 - 25 Jul 2023
Cited by 2 | Viewed by 1935
Abstract
Pulmonary hypertension (PH) has a high mortality and few treatment options. Adaptive immune mediators of PH in mice challenged with antigen/particulate matter (antigen/PM) has been the focus of our prior work. We identified key roles of type-2- and type-17 responses in C57BL/6 mice. [...] Read more.
Pulmonary hypertension (PH) has a high mortality and few treatment options. Adaptive immune mediators of PH in mice challenged with antigen/particulate matter (antigen/PM) has been the focus of our prior work. We identified key roles of type-2- and type-17 responses in C57BL/6 mice. Here, we focused on type-2-response-related cytokines, specifically resistin-like molecule (RELM)α, a critical mediator of hypoxia-induced PH. Because of strain differences in the immune responses to type 2 stimuli, we compared C57BL/6J and BALB/c mice. A model of intraperitoneal antigen sensitization with subsequent, intranasal challenges with antigen/PM (ovalbumin and urban ambient PM2.5) or saline was used in C57BL/6 and BALB/c wild-type or RELMα−/− mice. Vascular remodeling was assessed with histology; right ventricular (RV) pressure, RV weights and cytokines were quantified. Upon challenge with antigen/PM, both C57BL/6 and BALB/c mice developed pulmonary vascular remodeling; these changes were much more prominent in the C57BL/6 strain. Compared to wild-type mice, RELMα−/− had significantly reduced pulmonary vascular remodeling in BALB/c, but not in C57BL/6 mice. RV weights, RV IL-33 and RV IL-33-receptor were significantly increased in BALB/c wild-type mice, but not in BALB/c-RELMα−/− or in C57BL/6-wild-type or C57BL/6-RELMα−/− mice in response to antigen/PM2.5. RV systolic pressures (RVSP) were higher in BALB/c compared to C57BL/6J mice, and RELMα−/− mice were not different from their respective wild-type controls. The RELMα−/− animals demonstrated significantly decreased expression of RELMβ and RELMγ, which makes these mice comparable to a situation where human RELMβ levels would be significantly modified, as only humans have this single RELM molecule. In BALB/c mice, RELMα was a key contributor to pulmonary vascular remodeling, increase in RV weight and RV cytokine responses induced by exposure to antigen/PM2.5, highlighting the significance of the genetic background for the biological role of RELMα. Full article
(This article belongs to the Special Issue New Advances in Inflammation and Repair in Respiratory Diseases)
Show Figures

Graphical abstract

14 pages, 2800 KiB  
Article
The Milk Active Ingredient, 2′-Fucosyllactose, Inhibits Inflammation and Promotes MUC2 Secretion in LS174T Goblet Cells In Vitro
by Qianqian Yao, Huiying Li, Yanan Gao, Nan Zheng, Véronique Delcenserie and Jiaqi Wang
Foods 2023, 12(1), 186; https://doi.org/10.3390/foods12010186 - 1 Jan 2023
Cited by 13 | Viewed by 4057
Abstract
In several mice inflammatory models, human milk oligosaccharides (HMOs) were shown to protect the intestinal barrier by promoting mucin secretion and suppressing inflammation. However, the functions of the individual HMOs in enhancing mucin expression in vivo have not been compared, and the related [...] Read more.
In several mice inflammatory models, human milk oligosaccharides (HMOs) were shown to protect the intestinal barrier by promoting mucin secretion and suppressing inflammation. However, the functions of the individual HMOs in enhancing mucin expression in vivo have not been compared, and the related mechanisms are not yet to be clarified. In this study, we investigated the modulatory effects of 2′-fucosyllactose (2′-FL), 3′-sialyllactose (3′-SL), galacto-oligosaccharide (GOS) and lactose (Lac) on goblet cells’ functions in vitro. The appropriate dosage of the four chemicals was assessed in LS174T cells using the CCK-8 method. Then they were supplemented into a homeostasis and inflammatory environment to further investigate their effects under different conditions. Mucin secretion-related genes, including mucin 2 (MUC2), trefoil factor family 3 (TFF3), resistin-like β (RETNLB), carbohydrate sulfotransferase 5 (CHST5) and galactose-3-O-sulfotransferase 2 (GAL3ST2), in LS174T cells were detected using quantitative RT-qPCR. The results showed that 2′-FL (2.5 mg/mL, 72 h) was unable to increase MUC2 secretion in a steady-state condition. Comparatively, it exhibited a greater ability to improve mucin secretion under an inflammatory condition compared with GOS, demonstrated by a significant increase in TFF3 and CHST5 mRNA expression levels (p > 0.05). However, 3′-SL and Lac exhibited no effects on mucin secretion. To further investigate the underlying mechanism via which 2′-FL enhanced goblet cells’ secretion function, the NOD-like receptor family pyrin domain containing 6 (NLRP6) gene, which is closely related to MUC2 secretion, was silenced using the siRNA method. After silencing the NLRP6 gene, the mRNA expression levels of MUC2, TFF3 and CHST5 in the (2′-FL + tumor necrosis factor α (TNF-α) + NLRP6 siRNA) group were significantly decreased compared with the (2′-FL + TNF-α) group (p > 0.05), indicating that NLRP6 was essential for MUC2 expression in goblet cells. We further found that 2′-FL could significantly decrease toll-like receptor 4 (TLR4, p < 0.05), myeloid differential protein-88 (MyD88, p < 0.05) and nuclear factor kappa-B (NF-κB, p < 0.05) levels in LS174T inflammatory cells, even when the NLRP6 was silenced. Altogether, these results indicated that in goblet cells, 2′-FL exerts its function via multiple processes, i.e., by promoting mucin secretion through NLRP6 and suppressing inflammation by inhibiting the TLR4/MyD88/NF-κB pathway. Full article
Show Figures

Graphical abstract

14 pages, 3417 KiB  
Article
Whole-Exome Sequencing Reveals Migraine-Associated Novel Functional Variants in Arab Ancestry Females: A Pilot Study
by Johra Khan, Lubna Al Asoom, Ahmad Al Sunni, Nazish Rafique, Rabia Latif, Majed Alabdali, Azhar Alhariri, Majed Aloqaily, Sayed AbdulAzeez, Sadaf Jahan, Saeed Banawas and J. Francis Borgio
Brain Sci. 2022, 12(11), 1429; https://doi.org/10.3390/brainsci12111429 - 24 Oct 2022
Cited by 5 | Viewed by 2920
Abstract
Migraine, as the seventh most disabling neurological disease with 26.9% prevalence in Saudi females, lacks studies on identifying associated genes and pathways with migraines in the Arab population. This case control study aims to identify the migraine-associated novel genes and risk variants. More [...] Read more.
Migraine, as the seventh most disabling neurological disease with 26.9% prevalence in Saudi females, lacks studies on identifying associated genes and pathways with migraines in the Arab population. This case control study aims to identify the migraine-associated novel genes and risk variants. More than 1900 Arab ancestry young female college students were screened: 103 fulfilled the ICHD-3 criteria for migraine and 20 cases confirmed in the neurology clinic were included for the study with age-matched healthy controls. DNA from blood samples were subjected to paired-end whole-exome sequencing. After quality control, 3365343 missense, frameshift, missense splice region variants and insertion–deletion (indels) polymorphisms were tested for association with migraine. Significant variants were validated using Sanger sequencing. A total of 17 (p-value 9.091 × 10−05) functional variants in 12 genes (RETNLB, SCAI, ADH4, ESPL1, CPT2, FLG, PPP4R1, SERPINB5, ZNF66, ETAA1, EXO1 and CPA6) were associated with higher migraine risk, including a stop-gained frameshift (-13-14*SX) variant in the gene RETNLB (rs5851607; p-value 3.446 × 10−06). Gene analysis revealed that half of the significant novel migraine risk genes were expressed in the temporal lobe (p-value 0.0058) of the cerebral cortex. This is the first study exploring the migraine risk of 17 functional variants in 12 genes among Saudi female migraineurs of Arab ancestry using whole-exome sequencing. Half of the significant genes were expressed in the temporal lobe, which expands migraine pathophysiology and early identification using biomarkers for research possibilities on personalised genetics. Full article
(This article belongs to the Special Issue The Effects of Neurotransmitters on Stem Cell Differentiation)
Show Figures

Figure 1

Back to TopTop